Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
ArXiv ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947928

RESUMEN

BACKGROUND: Cone-beam computed tomography (CBCT) scans, performed fractionally (e.g., daily or weekly), are widely utilized for patient alignment in the image-guided radiotherapy (IGRT) process, thereby making it a potential imaging modality for the implementation of adaptive radiotherapy (ART) protocols. Nonetheless, significant artifacts and incorrect Hounsfield unit (HU) values hinder their application in quantitative tasks such as target and organ segmentations and dose calculation. Therefore, acquiring CT-quality images from the CBCT scans is essential to implement online ART in clinical settings. PURPOSE: This work aims to develop an unsupervised learning method using the patient-specific diffusion model for CBCT-based synthetic CT (sCT) generation to improve the image quality of CBCT. METHODS: The proposed method is in an unsupervised framework that utilizes a patient-specific score-based model as the image prior alongside a customized total variation (TV) regularization to enforce coherence across different transverse slices. The score-based model is unconditionally trained using the same patient's planning CT (pCT) images to characterize the manifold of CT-quality images and capture the unique anatomical information of the specific patient. The efficacy of the proposed method was assessed on images from anatomical sites including head and neck (H&N) cancer, pancreatic cancer, and lung cancer. The performance of the proposed CBCT correction method was evaluated using quantitative metrics including mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC). Additionally, the proposed algorithm was benchmarked against two other unsupervised diffusion model-based CBCT correction algorithms.

2.
Med Phys ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889368

RESUMEN

BACKGROUND: Iodine maps, derived from image-processing of contrast-enhanced dual-energy computed tomography (DECT) scans, highlight the differences in tissue iodine intake. It finds multiple applications in radiology, including vascular imaging, pulmonary evaluation, kidney assessment, and cancer diagnosis. In radiation oncology, it can contribute to designing more accurate and personalized treatment plans. However, DECT scanners are not commonly available in radiation therapy centers. Additionally, the use of iodine contrast agents is not suitable for all patients, especially those allergic to iodine agents, posing further limitations to the accessibility of this technology. PURPOSE: The purpose of this work is to generate synthetic iodine map images from non-contrast single-energy CT (SECT) images using conditional denoising diffusion probabilistic model (DDPM). METHODS: One-hundered twenty-six head-and-neck patients' images were retrospectively investigated in this work. Each patient underwent non-contrast SECT and contrast DECT scans. Ground truth iodine maps were generated from contrast DECT scans using commercial software syngo.via installed in the clinic. A conditional DDPM was implemented in this work to synthesize iodine maps. Three-fold cross-validation was conducted, with each iteration selecting the data from 42 patients as the test dataset and the remainder as the training dataset. Pixel-to-pixel generative adversarial network (GAN) and CycleGAN served as reference methods for evaluating the proposed DDPM method. RESULTS: The accuracy of the proposed DDPM was evaluated using three quantitative metrics: mean absolute error (MAE) (1.039 ± 0.345 mg/mL), structural similarity index measure (SSIM) (0.89 ± 0.10) and peak signal-to-noise ratio (PSNR) (25.4 ± 3.5 db) respectively. Compared to the reference methods, the proposed technique showcased superior performance across the evaluated metrics, further validated by the paired two-tailed t-tests. CONCLUSION: The proposed conditional DDPM framework has demonstrated the feasibility of generating synthetic iodine map images from non-contrast SECT images. This method presents a potential clinical application, which is providing accurate iodine contrast map in instances where only non-contrast SECT is accessible.

3.
ArXiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38800650

RESUMEN

This study aims to develop a digital twin (DT) framework to enhance adaptive proton stereotactic body radiation therapy (SBRT) for prostate cancer. Prostate SBRT has emerged as a leading option for external beam radiotherapy due to its effectiveness and reduced treatment duration. However, interfractional anatomy variations can impact treatment outcomes. This study seeks to address these uncertainties using DT concept, with the goal of improving treatment quality, potentially revolutionizing prostate radiotherapy to offer personalized treatment solutions. Our study presented a pioneering approach that leverages DT technology to enhance adaptive proton SBRT. The framework improves treatment plans by utilizing patient-specific CTV setup uncertainty, which is usually smaller than conventional clinical setups. This research contributes to the ongoing efforts to enhance the efficiency and efficacy of prostate radiotherapy, with ultimate goals of improving patient outcomes and life quality.

4.
Phys Med Biol ; 69(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38714192

RESUMEN

Objective.This study developed an unsupervised motion artifact reduction method for magnetic resonance imaging (MRI) images of patients with brain tumors. The proposed novel design uses multi-parametric multicenter contrast-enhanced T1W (ceT1W) and T2-FLAIR MRI images.Approach.The proposed framework included two generators, two discriminators, and two feature extractor networks. A 3-fold cross-validation was used to train and fine-tune the hyperparameters of the proposed model using 230 brain MRI images with tumors, which were then tested on 148 patients'in-vivodatasets. An ablation was performed to evaluate the model's compartments. Our model was compared with Pix2pix and CycleGAN. Six evaluation metrics were reported, including normalized mean squared error (NMSE), structural similarity index (SSIM), multi-scale-SSIM (MS-SSIM), peak signal-to-noise ratio (PSNR), visual information fidelity (VIF), and multi-scale gradient magnitude similarity deviation (MS-GMSD). Artifact reduction and consistency of tumor regions, image contrast, and sharpness were evaluated by three evaluators using Likert scales and compared with ANOVA and Tukey's HSD tests.Main results.On average, our method outperforms comparative models to remove heavy motion artifacts with the lowest NMSE (18.34±5.07%) and MS-GMSD (0.07 ± 0.03) for heavy motion artifact level. Additionally, our method creates motion-free images with the highest SSIM (0.93 ± 0.04), PSNR (30.63 ± 4.96), and VIF (0.45 ± 0.05) values, along with comparable MS-SSIM (0.96 ± 0.31). Similarly, our method outperformed comparative models in removingin-vivomotion artifacts for different distortion levels except for MS- SSIM and VIF, which have comparable performance with CycleGAN. Moreover, our method had a consistent performance for different artifact levels. For the heavy level of motion artifacts, our method got the highest Likert scores of 2.82 ± 0.52, 1.88 ± 0.71, and 1.02 ± 0.14 (p-values≪0.0001) for our method, CycleGAN, and Pix2pix respectively. Similar trends were also found for other motion artifact levels.Significance.Our proposed unsupervised method was demonstrated to reduce motion artifacts from the ceT1W brain images under a multi-parametric framework.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Movimiento , Humanos , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagen
6.
J Med Imaging (Bellingham) ; 11(1): 014503, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38370421

RESUMEN

Purpose: Glioblastoma (GBM) is aggressive and malignant. The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter in GBM tissue is considered an important biomarker for developing the most effective treatment plan. Although the standard method for assessing the MGMT promoter methylation status is via bisulfite modification and deoxyribonucleic acid (DNA) sequencing of biopsy or surgical specimens, a secondary automated method based on medical imaging may improve the efficiency and accuracy of those tests. Approach: We propose a deep vision graph neural network (ViG) using multiparametric magnetic resonance imaging (MRI) to predict the MGMT promoter methylation status noninvasively. Our model was compared to the RSNA radiogenomic classification winners. The dataset includes 583 usable patient cases. Combinations of MRI sequences were compared. Our multi-sequence fusion strategy was compared with those using single MR sequences. Results: Our best model [Fluid Attenuated Inversion Recovery (FLAIR), T1-weighted pre-contrast (T1w), T2-weighted (T2)] outperformed the winning models with a test area under the curve (AUC) of 0.628, an accuracy of 0.632, a precision of 0.646, a recall of 0.677, a specificity of 0.581, and an F1 score of 0.661. Compared to the winning models with single MR sequences, our ViG utilizing fused-MRI showed a significant improvement statistically in AUC scores, which are FLAIR (p=0.042), T1w (p=0.017), T1wCE (p=0.001), and T2 (p=0.018). Conclusions: Our model is superior to challenge champions. A graph representation of the medical images enabled good handling of complexity and irregularity. Our work provides an automatic secondary check pipeline to ensure the correctness of MGMT methylation status prediction.

7.
Phys Med Biol ; 69(4)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38241726

RESUMEN

Objective. High-resolution magnetic resonance imaging (MRI) can enhance lesion diagnosis, prognosis, and delineation. However, gradient power and hardware limitations prohibit recording thin slices or sub-1 mm resolution. Furthermore, long scan time is not clinically acceptable. Conventional high-resolution images generated using statistical or analytical methods include the limitation of capturing complex, high-dimensional image data with intricate patterns and structures. This study aims to harness cutting-edge diffusion probabilistic deep learning techniques to create a framework for generating high-resolution MRI from low-resolution counterparts, improving the uncertainty of denoising diffusion probabilistic models (DDPM).Approach. DDPM includes two processes. The forward process employs a Markov chain to systematically introduce Gaussian noise to low-resolution MRI images. In the reverse process, a U-Net model is trained to denoise the forward process images and produce high-resolution images conditioned on the features of their low-resolution counterparts. The proposed framework was demonstrated using T2-weighted MRI images from institutional prostate patients and brain patients collected in the Brain Tumor Segmentation Challenge 2020 (BraTS2020).Main results. For the prostate dataset, the bicubic interpolation model (Bicubic), conditional generative-adversarial network (CGAN), and our proposed DDPM framework improved the noise quality measure from low-resolution images by 4.4%, 5.7%, and 12.8%, respectively. Our method enhanced the signal-to-noise ratios by 11.7%, surpassing Bicubic (9.8%) and CGAN (8.1%). In the BraTS2020 dataset, the proposed framework and Bicubic enhanced peak signal-to-noise ratio from resolution-degraded images by 9.1% and 5.8%. The multi-scale structural similarity indexes were 0.970 ± 0.019, 0.968 ± 0.022, and 0.967 ± 0.023 for the proposed method, CGAN, and Bicubic, respectively.Significance. This study explores a deep learning-based diffusion probabilistic framework for improving MR image resolution. Such a framework can be used to improve clinical workflow by obtaining high-resolution images without penalty of the long scan time. Future investigation will likely focus on prospectively testing the efficacy of this framework with different clinical indications.


Asunto(s)
Bisacodilo/análogos & derivados , Imagen por Resonancia Magnética , Modelos Estadísticos , Masculino , Humanos , Relación Señal-Ruido , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
8.
Med Phys ; 51(3): 1847-1859, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37646491

RESUMEN

BACKGROUND: Daily or weekly cone-beam computed tomography (CBCT) scans are commonly used for accurate patient positioning during the image-guided radiotherapy (IGRT) process, making it an ideal option for adaptive radiotherapy (ART) replanning. However, the presence of severe artifacts and inaccurate Hounsfield unit (HU) values prevent its use for quantitative applications such as organ segmentation and dose calculation. To enable the clinical practice of online ART, it is crucial to obtain CBCT scans with a quality comparable to that of a CT scan. PURPOSE: This work aims to develop a conditional diffusion model to perform image translation from the CBCT to the CT distribution for the image quality improvement of CBCT. METHODS: The proposed method is a conditional denoising diffusion probabilistic model (DDPM) that utilizes a time-embedded U-net architecture with residual and attention blocks to gradually transform the white Gaussian noise sample to the target CT distribution conditioned on the CBCT. The model was trained on deformed planning CT (dpCT) and CBCT image pairs, and its feasibility was verified in brain patient study and head-and-neck (H&N) patient study. The performance of the proposed algorithm was evaluated using mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and normalized cross-correlation (NCC) metrics on generated synthetic CT (sCT) samples. The proposed method was also compared to four other diffusion model-based sCT generation methods. RESULTS: In the brain patient study, the MAE, PSNR, and NCC of the generated sCT were 25.99 HU, 30.49 dB, and 0.99, respectively, compared to 40.63 HU, 27.87 dB, and 0.98 of the CBCT images. In the H&N patient study, the metrics were 32.56 HU, 27.65 dB, 0.98 and 38.99 HU, 27.00, 0.98 for sCT and CBCT, respectively. Compared to the other four diffusion models and one Cycle generative adversarial network (Cycle GAN), the proposed method showed superior results in both visual quality and quantitative analysis. CONCLUSIONS: The proposed conditional DDPM method can generate sCT from CBCT with accurate HU numbers and reduced artifacts, enabling accurate CBCT-based organ segmentation and dose calculation for online ART.


Asunto(s)
Bisacodilo/análogos & derivados , Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada de Haz Cónico Espiral , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada de Haz Cónico , Tomografía Computarizada por Rayos X , Modelos Estadísticos , Planificación de la Radioterapia Asistida por Computador/métodos
9.
J Appl Clin Med Phys ; 25(2): e14155, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37712893

RESUMEN

Recent advances in MRI-guided radiation therapy (MRgRT) and deep learning techniques encourage fully adaptive radiation therapy (ART), real-time MRI monitoring, and the MRI-only treatment planning workflow. Given the rapid growth and emergence of new state-of-the-art methods in these fields, we systematically review 197 studies written on or before December 31, 2022, and categorize the studies into the areas of image segmentation, image synthesis, radiomics, and real time MRI. Building from the underlying deep learning methods, we discuss their clinical importance and current challenges in facilitating small tumor segmentation, accurate x-ray attenuation information from MRI, tumor characterization and prognosis, and tumor motion tracking. In particular, we highlight the recent trends in deep learning such as the emergence of multi-modal, visual transformer, and diffusion models.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia
10.
Med Phys ; 51(4): 2538-2548, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38011588

RESUMEN

BACKGROUND AND PURPOSE: Magnetic resonance imaging (MRI)-based synthetic computed tomography (sCT) simplifies radiation therapy treatment planning by eliminating the need for CT simulation and error-prone image registration, ultimately reducing patient radiation dose and setup uncertainty. In this work, we propose a MRI-to-CT transformer-based improved denoising diffusion probabilistic model (MC-IDDPM) to translate MRI into high-quality sCT to facilitate radiation treatment planning. METHODS: MC-IDDPM implements diffusion processes with a shifted-window transformer network to generate sCT from MRI. The proposed model consists of two processes: a forward process, which involves adding Gaussian noise to real CT scans to create noisy images, and a reverse process, in which a shifted-window transformer V-net (Swin-Vnet) denoises the noisy CT scans conditioned on the MRI from the same patient to produce noise-free CT scans. With an optimally trained Swin-Vnet, the reverse diffusion process was used to generate noise-free sCT scans matching MRI anatomy. We evaluated the proposed method by generating sCT from MRI on an institutional brain dataset and an institutional prostate dataset. Quantitative evaluations were conducted using several metrics, including Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR), Multi-scale Structure Similarity Index (SSIM), and Normalized Cross Correlation (NCC). Dosimetry analyses were also performed, including comparisons of mean dose and target dose coverages for 95% and 99%. RESULTS: MC-IDDPM generated brain sCTs with state-of-the-art quantitative results with MAE 48.825 ± 21.491 HU, PSNR 26.491 ± 2.814 dB, SSIM 0.947 ± 0.032, and NCC 0.976 ± 0.019. For the prostate dataset: MAE 55.124 ± 9.414 HU, PSNR 28.708 ± 2.112 dB, SSIM 0.878 ± 0.040, and NCC 0.940 ± 0.039. MC-IDDPM demonstrates a statistically significant improvement (with p < 0.05) in most metrics when compared to competing networks, for both brain and prostate synthetic CT. Dosimetry analyses indicated that the target dose coverage differences by using CT and sCT were within ± 0.34%. CONCLUSIONS: We have developed and validated a novel approach for generating CT images from routine MRIs using a transformer-based improved DDPM. This model effectively captures the complex relationship between CT and MRI images, allowing for robust and high-quality synthetic CT images to be generated in a matter of minutes. This approach has the potential to greatly simplify the treatment planning process for radiation therapy by eliminating the need for additional CT scans, reducing the amount of time patients spend in treatment planning, and enhancing the accuracy of treatment delivery.


Asunto(s)
Cabeza , Tomografía Computarizada por Rayos X , Masculino , Humanos , Tomografía Computarizada por Rayos X/métodos , Imagen por Resonancia Magnética/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radiometría , Procesamiento de Imagen Asistido por Computador/métodos
11.
Retin Cases Brief Rep ; 18(1): 51-58, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007192

RESUMEN

PURPOSE: To report 6 cases of diffuse choroidal hemangioma in children treated with iodine-125 plaque brachytherapy at a single tertiary care center. METHODS: Retrospective case series. RESULTS: Six pediatric patients diagnosed with diffuse choroidal hemangioma were included in the study. Preplaque visual acuity ranged from 20/150 to no light perception. All patients had extensive serous retinal detachment at presentation. An iodine-125 radioactive plaque was placed on the affected eye to administer a dose of 34.2-42.1 Gy to the tumor apex over a median of 4 days. Tumor regression and subretinal fluid resolution were observed in all eyes within 17 months of treatment. Visual acuity improved in two patients. Radiation-induced cataract and subretinal fibrosis were documented in one case, and one patient developed radiation retinopathy. No patients developed neovascular glaucoma within the follow-up time of 12-65 months. CONCLUSION: Iodine-125 plaque radiotherapy is an effective option for diffuse choroidal hemangioma, although there is a risk for radiation-induced complications.


Asunto(s)
Braquiterapia , Neoplasias de la Coroides , Hemangioma , Humanos , Niño , Braquiterapia/efectos adversos , Estudios Retrospectivos , Hemangioma/radioterapia , Hemangioma/tratamiento farmacológico , Radioisótopos de Yodo/uso terapéutico , Neoplasias de la Coroides/diagnóstico , Estudios de Seguimiento , Resultado del Tratamiento
12.
Phys Med Biol ; 68(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972414

RESUMEN

The hippocampus plays a crucial role in memory and cognition. Because of the associated toxicity from whole brain radiotherapy, more advanced treatment planning techniques prioritize hippocampal avoidance, which depends on an accurate segmentation of the small and complexly shaped hippocampus. To achieve accurate segmentation of the anterior and posterior regions of the hippocampus from T1 weighted (T1w) MR images, we developed a novel model, Hippo-Net, which uses a cascaded model strategy. The proposed model consists of two major parts: (1) a localization model is used to detect the volume-of-interest (VOI) of hippocampus. (2) An end-to-end morphological vision transformer network (Franchietal2020Pattern Recognit.102107246, Ranemetal2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW) pp 3710-3719) is used to perform substructures segmentation within the hippocampus VOI. The substructures include the anterior and posterior regions of the hippocampus, which are defined as the hippocampus proper and parts of the subiculum. The vision transformer incorporates the dominant features extracted from MR images, which are further improved by learning-based morphological operators. The integration of these morphological operators into the vision transformer increases the accuracy and ability to separate hippocampus structure into its two distinct substructures. A total of 260 T1w MRI datasets from medical segmentation decathlon dataset were used in this study. We conducted a five-fold cross-validation on the first 200 T1w MR images and then performed a hold-out test on the remaining 60 T1w MR images with the model trained on the first 200 images. In five-fold cross-validation, the Dice similarity coefficients were 0.900 ± 0.029 and 0.886 ± 0.031 for the hippocampus proper and parts of the subiculum, respectively. The mean surface distances (MSDs) were 0.426 ± 0.115 mm and 0.401 ± 0.100 mm for the hippocampus proper and parts of the subiculum, respectively. The proposed method showed great promise in automatically delineating hippocampus substructures on T1w MR images. It may facilitate the current clinical workflow and reduce the physicians' effort.


Asunto(s)
Hipocampo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Hipocampo/diagnóstico por imagen , Inteligencia Artificial , Procesamiento de Imagen Asistido por Computador/métodos
13.
ArXiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37396614

RESUMEN

Background: The hippocampus plays a crucial role in memory and cognition. Because of the associated toxicity from whole brain radiotherapy, more advanced treatment planning techniques prioritize hippocampal avoidance, which depends on an accurate segmentation of the small and complexly shaped hippocampus. Purpose: To achieve accurate segmentation of the anterior and posterior regions of the hippocampus from T1 weighted (T1w) MRI images, we developed a novel model, Hippo-Net, which uses a mutually enhanced strategy. Methods: The proposed model consists of two major parts: 1) a localization model is used to detect the volume-of-interest (VOI) of hippocampus. 2) An end-to-end morphological vision transformer network is used to perform substructures segmentation within the hippocampus VOI. The substructures include the anterior and posterior regions of the hippocampus, which are defined as the hippocampus proper and parts of the subiculum. The vision transformer incorporates the dominant features extracted from MRI images, which are further improved by learning-based morphological operators. The integration of these morphological operators into the vision transformer increases the accuracy and ability to separate hippocampus structure into its two distinct substructures.A total of 260 T1w MRI datasets from Medical Segmentation Decathlon dataset were used in this study. We conducted a five-fold cross-validation on the first 200 T1w MR images and then performed a hold-out test on the remaining 60 T1w MR images with the model trained on the first 200 images. The segmentations were evaluated with two indicators, 1) multiple metrics including the Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), volume difference (VD) and center-of-mass distance (COMD); 2) Volumetric Pearson correlation analysis. Results: In five-fold cross-validation, the DSCs were 0.900±0.029 and 0.886±0.031 for the hippocampus proper and parts of the subiculum, respectively. The MSD were 0.426±0.115mm and 0.401±0.100 mm for the hippocampus proper and parts of the subiculum, respectively. Conclusions: The proposed method showed great promise in automatically delineating hippocampus substructures on T1w MRI images. It may facilitate the current clinical workflow and reduce the physicians' effort.

14.
Radiother Oncol ; 186: 109801, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423478

RESUMEN

PURPOSE: Image-guided high-dose-rate (HDR) prostate brachytherapy is a safe and effective treatment option for prostate cancer patients; however, some patients still experience acute and late genitourinary (GU) toxicity. Studies have shown that urethral dose is associated with the incidence and severity of GU toxicity. Therefore, a technique that can further spare the urethra while ensuring adequate target coverage is highly desirable. Intensity modulated brachytherapy (IMBT) designs, such as rotating shield brachytherapy (RSBT), offer ideal dosimetry theoretically but are challenging to implement clinically due to the need for high precision in moving the treatment delivery mechanisms synchronized with the source loading. In this study, we propose a novel relatively easy-to-implement solution based on the direction modulated brachytherapy (DMBT) design concept, which does not involve moving parts and works effectively with the ubiquitous 192Ir source. MATERIALS AND METHODS: The popular Varian VS2000 (VS) and GammaMedPlus (GMP) 192Ir sources, with outer diameters of 0.6 mm and 0.9 mm, respectively, were simulated using the GEANT4 Monte Carlo (MC) simulation code. The novel DMBT needle concept consists of a 14-gauge nitinol needle, which houses a platinum shield inside. A single groove, consistent with the outer diameter of each source, was incorporated inside the platinum shield to accommodate the HDR source. The maximum thickness of the shield was 1.1 mm (0.8 mm) for the VS (GMP) source. To evaluate the effectiveness of the DMBT needle concept in reducing urethral dose, 6 patient cases were studied and DMBT plans were created by replacing two needles close to the urethra with the DMBT needles. The dosimetric comparisons between the DMBT and reference clinical plans were done by assessing the dose-volume histogram (DVH) planning criteria for the target coverage and organs-at-risk. RESULTS: The MC results showed that the use of the novel DMBT needle design with the VS source (GMP source) could reduce the dose by 49.6% (39.2%) at 1 cm from the needle behind the platinum shield, as compared to the unshielded side. Additionally, when using the same DVH planning criteria as the original plan, the DMBT plan with the VS (GMP) source reduced the maximum urethral dose by 10.3% ± 5.6% (8.1% ± 5.0%) and 17.7% ± 14.2% (16.6% ± 13.3%) for 0 mm and 2 mm margins, respectively, while maintaining equivalent V90% and D100 target coverage. CONCLUSION: The novel DMBT technique offers a promising clinically implementable solution for sparing urethra, particularly in pre-apical region, without compromising the target coverage or increasing treatment time.


Asunto(s)
Braquiterapia , Neoplasias de la Próstata , Masculino , Humanos , Braquiterapia/métodos , Uretra , Platino (Metal) , Órganos en Riesgo , Dosificación Radioterapéutica , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos
15.
ArXiv ; 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36994167

RESUMEN

MRI-guided radiation therapy (MRgRT) offers a precise and adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed. MRI-guided radiation therapy offers a precise, adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed with emphasis placed on underlying methods. Studies are further categorized into the areas of segmentation, synthesis, radiomics, and real time MRI. Finally, clinical implications, current challenges, and future directions are discussed.

16.
Biomed Phys Eng Express ; 7(6)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34654011

RESUMEN

Kilovoltage cone-beam computed tomography (CBCT)-based image-guided radiation therapy (IGRT) is used for daily delivery of radiation therapy, especially for stereotactic body radiation therapy (SBRT), which imposes particularly high demands for setup accuracy. The clinical applications of CBCTs are constrained, however, by poor soft tissue contrast, image artifacts, and instability of Hounsfield unit (HU) values. Here, we propose a new deep learning-based method to generate synthetic CTs (sCT) from thoracic CBCTs. A deep-learning model which integrates histogram matching (HM) into a cycle-consistent adversarial network (Cycle-GAN) framework, called HM-Cycle-GAN, was trained to learn mapping between thoracic CBCTs and paired planning CTs. Perceptual supervision was adopted to minimize blurring of tissue interfaces. An informative maximizing loss was calculated by feeding CBCT into the HM-Cycle-GAN to evaluate the image histogram matching between the planning CTs and the sCTs. The proposed algorithm was evaluated using data from 20 SBRT patients who each received 5 fractions and therefore 5 thoracic CBCTs. To reduce the effect of anatomy mismatch, original CBCT images were pre-processed via deformable image registrations with the planning CT before being used in model training and result assessment. We used planning CTs as ground truth for the derived sCTs from the correspondent co-registered CBCTs. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC) indices were adapted as evaluation metrics of the proposed algorithm. Assessments were done using Cycle-GAN as the benchmark. The average MAE, PSNR, and NCC of the sCTs generated by our method were 66.2 HU, 30.3 dB, and 0.95, respectively, over all CBCT fractions. Superior image quality and reduced noise and artifact severity were seen using the proposed method compared to the results from the standard Cycle-GAN method. Our method could therefore improve the accuracy of IGRT and corrected CBCTs could help improve online adaptive RT by offering better contouring accuracy and dose calculation.


Asunto(s)
Aprendizaje Profundo , Radioterapia Guiada por Imagen , Tomografía Computarizada de Haz Cónico Espiral , Humanos , Planificación de la Radioterapia Asistida por Computador
17.
Radiother Oncol ; 163: 39-45, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34333086

RESUMEN

INTRODUCTION: Prior in silico simulations of studies of Temporally Feathered Radiation Therapy (TFRT) have demonstrated potential reduction in normal tissue toxicity. This R-IDEAL Stage 1/2A study seeks to demonstrate the first-in-human implementation of TFRT in treating patients with head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: Patients with HNSCC treated with definitive radiation therapy were eligible (70 Gy in 35 fractions) were eligible. The primary endpoint was feasibility of TFRT planning as defined by radiation start within 15 business days of CT simulation. Secondary endpoints included estimates of acute grade 3-5 toxicity. RESULTS: The study met its accrual goal of 5 patients. TFRT plans were generated in four of the five patients within 15 business days of CT simulation, therefore meeting the primary endpoint. One patient was not treated with TFRT at the physician's discretion, though the TFRT plan had been generated within sufficient time from the CT simulation. For patients who received TFRT, the median time from CT simulation to radiation start was 10 business days (range 8-15). The average time required for radiation planning was 6 business days. In all patients receiving TFRT, each subplan and every daily fraction was delivered in the correct sequence without error. The OARs feathered included: oral cavity, each submandibular gland, each parotid gland, supraglottis, and posterior pharyngeal wall (OAR pharynx). Prescription dose PTV coverage (>95%) was ensured in each TFRT subplan and the composite TFRT plan. One of five patients developed an acute grade 3 toxicity. CONCLUSIONS: This study demonstrates the first-in-human implementation of TFRT (R-IDEAL Stage 1), proving its feasibility in the modern clinical workflow. Additionally, assessments of acute toxicities and dosimetric comparisons to a standard radiotherapy plan were described (R-IDEAL Stage 2a).


Asunto(s)
Neoplasias de Cabeza y Cuello , Planificación de la Radioterapia Asistida por Computador , Estudios de Factibilidad , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Dosificación Radioterapéutica , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Tecnología
18.
Med Phys ; 47(9): 4115-4124, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32484573

RESUMEN

PURPOSE: High-dose-rate (HDR) brachytherapy is an established technique to be used as monotherapy option or focal boost in conjunction with external beam radiation therapy (EBRT) for treating prostate cancer. Radiation source path reconstruction is a critical procedure in HDR treatment planning. Manually identifying the source path is labor intensive and time inefficient. In recent years, magnetic resonance imaging (MRI) has become a valuable imaging modality for image-guided HDR prostate brachytherapy due to its superb soft-tissue contrast for target delineation and normal tissue contouring. The purpose of this study is to investigate a deep-learning-based method to automatically reconstruct multiple catheters in MRI for prostate cancer HDR brachytherapy treatment planning. METHODS: Attention gated U-Net incorporated with total variation (TV) regularization model was developed for multi-catheter segmentation in MRI. The attention gates were used to improve the accuracy of identifying small catheter points, while TV regularization was adopted to encode the natural spatial continuity of catheters into the model. The model was trained using the binary catheter annotation images offered by experienced physicists as ground truth paired with original MRI images. After the network was trained, MR images of a new prostate cancer patient receiving HDR brachytherapy were fed into the model to predict the locations and shapes of all the catheters. Quantitative assessments of our proposed method were based on catheter shaft and tip errors compared to the ground truth. RESULTS: Our method detected 299 catheters from 20 patients receiving HDR prostate brachytherapy with a catheter tip error of 0.37 ± 1.68 mm and a catheter shaft error of 0.93 ± 0.50 mm. For detection of catheter tips, our method resulted in 87% of the catheter tips within an error of less than ± 2.0 mm, and more than 71% of the tips can be localized within an absolute error of no >1.0 mm. For catheter shaft localization, 97% of catheters were detected with an error of <2.0 mm, while 63% were within 1.0 mm. CONCLUSIONS: In this study, we proposed a novel multi-catheter detection method to precisely localize the tips and shafts of catheters in three-dimensional MRI images of HDR prostate brachytherapy. It paves the way for elevating the quality and outcome of MRI-guided HDR prostate brachytherapy.


Asunto(s)
Braquiterapia , Neoplasias de la Próstata , Catéteres , Humanos , Imagen por Resonancia Magnética , Masculino , Redes Neurales de la Computación , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica
19.
J Appl Clin Med Phys ; 21(7): 209-215, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32383296

RESUMEN

PURPOSE: Prior in silico simulations propose that Temporally Feathered Radiation Therapy (TFRT) may reduce toxicity related to head and neck radiation therapy. In this study we demonstrate a step-by-step guide to TFRT planning with modern treatment planning systems. METHODS: One patient with oropharyngeal cancer planned for definitive radiation therapy using intensity-modulated radiation therapy (IMRT) techniques was replanned using the TFRT technique. Five organs at risk (OAR) were identified to be feathered. A "base plan" was first created based on desired planning target volumes (PTV) coverage, plan conformality, and OAR constraints. The base plan was then re-optimized by modifying planning objectives, to generate five subplans. All beams from each subplan were imported onto one trial to create the composite TFRT plan. The composite TFRT plan was directly compared with the non-TFRT IMRT plan. During plan assessment, the composite TFRT was first evaluated followed by each subplan to meet preset compliance criteria. RESULTS: The following organs were feathered: oral cavity, right submandibular gland, left submandibular gland, supraglottis, and OAR Pharynx. Prescription dose PTV coverage (>95%) was met in each subplan and the composite TFRT plan. Expected small variations in dose were observed among the plans. The percent variation between the high fractional dose and average low fractional dose was 29%, 28%, 24%, 19%, and 10% for the oral cavity, right submandibular, left submandibular, supraglottis, and OAR pharynx nonoverlapping with the PTV. CONCLUSIONS: Temporally Feathered Radiation Therapy planning is possible with modern treatment planning systems. Modest dosimetric changes are observed with TFRT planning compared with non-TFRT IMRT planning. We await the results of the current prospective trial to seeking to demonstrate the feasibility of TFRT in the modern clinical workflow (NCT03768856). Further studies will be required to demonstrate the potential benefit of TFRT over non-TFRT IMRT Planning.


Asunto(s)
Neoplasias de Cabeza y Cuello , Radioterapia de Intensidad Modulada , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
20.
Med Phys ; 47(7): 2735-2745, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32155666

RESUMEN

PURPOSE: Ultrasound (US)-guided high dose rate (HDR) prostate brachytherapy requests the clinicians to place HDR needles (catheters) into the prostate gland under transrectal US (TRUS) guidance in the operating room. The quality of the subsequent radiation treatment plan is largely dictated by the needle placements, which varies upon the experience level of the clinicians and the procedure protocols. Real-time plan dose distribution, if available, could be a vital tool to provide more subjective assessment of the needle placements, hence potentially improving the radiation plan quality and the treatment outcome. However, due to low signal-to-noise ratio (SNR) in US imaging, real-time multi-needle segmentation in 3D TRUS, which is the major obstacle for real-time dose mapping, has not been realized to date. In this study, we propose a deep learning-based method that enables accurate and real-time digitization of the multiple needles in the 3D TRUS images of HDR prostate brachytherapy. METHODS: A deep learning model based on the U-Net architecture was developed to segment multiple needles in the 3D TRUS images. Attention gates were considered in our model to improve the prediction on the small needle points. Furthermore, the spatial continuity of needles was encoded into our model with total variation (TV) regularization. The combined network was trained on 3D TRUS patches with the deep supervision strategy, where the binary needle annotation images were provided as ground truth. The trained network was then used to localize and segment the HDR needles for a new patient's TRUS images. We evaluated our proposed method based on the needle shaft and tip errors against manually defined ground truth and compared our method with other state-of-art methods (U-Net and deeply supervised attention U-Net). RESULTS: Our method detected 96% needles of 339 needles from 23 HDR prostate brachytherapy patients with 0.290 ± 0.236 mm at shaft error and 0.442 ± 0.831 mm at tip error. For shaft localization, our method resulted in 96% localizations with less than 0.8 mm error (needle diameter is 1.67 mm), while for tip localization, our method resulted in 75% needles with 0 mm error and 21% needles with 2 mm error (TRUS image slice thickness is 2 mm). No significant difference is observed (P = 0.83) on tip localization between our results with the ground truth. Compared with U-Net and deeply supervised attention U-Net, the proposed method delivers a significant improvement on both shaft error and tip error (P < 0.05). CONCLUSIONS: We proposed a new segmentation method to precisely localize the tips and shafts of multiple needles in 3D TRUS images of HDR prostate brachytherapy. The 3D rendering of the needles could help clinicians to evaluate the needle placements. It paves the way for the development of real-time plan dose assessment tools that can further elevate the quality and outcome of HDR prostate brachytherapy.


Asunto(s)
Braquiterapia , Neoplasias de la Próstata , Atención , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA