Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neuropsychopharmacology ; 49(11): 1749-1757, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38830989

RESUMEN

Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWASs) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N = 52) and nonsmokers (N = 171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and correcting for multiple testing using a two-stage procedure. We found >2 million significant meQTL variants (padj < 0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects, and five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTL variants for 958 unique eGenes (padj < 0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTN1 and ITIH4 colocalized across all data types (GWAS, meQTL, and eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.


Asunto(s)
Metilación de ADN , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fumar , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Fumar/genética , Fumar/metabolismo , Núcleo Accumbens/metabolismo , Encéfalo/metabolismo , Anciano
2.
Mol Psychiatry ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935791

RESUMEN

Cannabis is widely used worldwide, yet its links to health outcomes are not fully understood. DNA methylation can serve as a mediator to link environmental exposures to health outcomes. We conducted an epigenome-wide association study (EWAS) of peripheral blood-based DNA methylation and lifetime cannabis use (ever vs. never) in a meta-analysis including 9436 participants (7795 European and 1641 African ancestry) from seven cohorts. Accounting for effects of cigarette smoking, our trans-ancestry EWAS meta-analysis revealed four CpG sites significantly associated with lifetime cannabis use at a false discovery rate of 0.05 [Formula: see text]: cg22572071 near gene ADGRF1, cg15280358 in ADAM12, cg00813162 in ACTN1, and cg01101459 near LINC01132. Additionally, our EWAS analysis in participants who never smoked cigarettes identified another epigenome-wide significant CpG site, cg14237301 annotated to APOBR. We used a leave-one-out approach to evaluate methylation scores constructed as a weighted sum of the significant CpGs. The best model can explain 3.79% of the variance in lifetime cannabis use. These findings unravel the DNA methylation changes associated with lifetime cannabis use that are independent of cigarette smoking and may serve as a starting point for further research on the mechanisms through which cannabis exposure impacts health outcomes.

3.
medRxiv ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37790540

RESUMEN

Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWAS) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N=52) and nonsmokers (N=171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and using a two-stage multiple testing approach with eigenMT and Bonferroni corrections. We found >2 million significant meQTL variants (padj<0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects; five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTLs for 958 unique eGenes (padj<0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTIN1 and ITIH4 colocalized across all data types (GWAS + meQTL + eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.

4.
Nat Genet ; 55(2): 291-300, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702996

RESUMEN

Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.


Asunto(s)
Reposicionamiento de Medicamentos , Transcriptoma , Humanos , Transcriptoma/genética , Estudio de Asociación del Genoma Completo/métodos , Uso de Tabaco , Biología , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad
6.
Mol Psychiatry ; 27(7): 3085-3094, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35422469

RESUMEN

Cigarette smoking and alcohol use are among the most prevalent substances used worldwide and account for a substantial proportion of preventable morbidity and mortality, underscoring the public health significance of understanding their etiology. Genome-wide association studies (GWAS) have successfully identified genetic variants associated with cigarette smoking and alcohol use traits. However, the vast majority of risk variants reside in non-coding regions of the genome, and their target genes and neurobiological mechanisms are unknown. Chromosomal conformation mappings can address this knowledge gap by charting the interaction profiles of risk-associated regulatory variants with target genes. To investigate the functional impact of common variants associated with cigarette smoking and alcohol use traits, we applied Hi-C coupled MAGMA (H-MAGMA) built upon cortical and newly generated midbrain dopaminergic neuronal Hi-C datasets to GWAS summary statistics of nicotine dependence, cigarettes per day, problematic alcohol use, and drinks per week. The identified risk genes mapped to key pathways associated with cigarette smoking and alcohol use traits, including drug metabolic processes and neuronal apoptosis. Risk genes were highly expressed in cortical glutamatergic, midbrain dopaminergic, GABAergic, and serotonergic neurons, suggesting them as relevant cell types in understanding the mechanisms by which genetic risk factors influence cigarette smoking and alcohol use. Lastly, we identified pleiotropic genes between cigarette smoking and alcohol use traits under the assumption that they may reveal substance-agnostic, shared neurobiological mechanisms of addiction. The number of pleiotropic genes was ~26-fold higher in dopaminergic neurons than in cortical neurons, emphasizing the critical role of ascending dopaminergic pathways in mediating general addiction phenotypes. Collectively, brain region- and neuronal subtype-specific 3D genome architecture helps refine neurobiological hypotheses for smoking, alcohol, and general addiction phenotypes by linking genetic risk factors to their target genes.


Asunto(s)
Conducta Adictiva , Fumar Cigarrillos , Conducta Adictiva/genética , Cromatina , Etanol , Estudio de Asociación del Genoma Completo , Fenotipo
7.
Am J Med Genet B Neuropsychiatr Genet ; 186(3): 173-182, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32803843

RESUMEN

Cannabis use is highly prevalent and is associated with adverse and beneficial effects. To better understand the full spectrum of health consequences, biomarkers that accurately classify cannabis use are needed. DNA methylation (DNAm) is an excellent candidate, yet no blood-based epigenome-wide association studies (EWAS) in humans exist. We conducted an EWAS of lifetime cannabis use (ever vs. never) using blood-based DNAm data from a case-cohort study within Sister Study, a prospective cohort of women at risk of developing breast cancer (Discovery N = 1,730 [855 ever users]; Replication N = 853 [392 ever users]). We identified and replicated an association with lifetime cannabis use at cg15973234 (CEMIP): combined p = 3.3 × 10-8 . We found no overlap between published blood-based cis-meQTLs of cg15973234 and reported lifetime cannabis use-associated single nucleotide polymorphism (SNPs; p < .05), suggesting that the observed DNAm difference was driven by cannabis exposure. We also developed a multi-CpG classifier of lifetime cannabis use using penalized regression of top EWAS CpGs. The resulting 50-CpG classifier produced an area under the curve (AUC) = 0.74 (95% CI [0.72, 0.76], p = 2.00 × 10-5 ) in the discovery sample and AUC = 0.54 ([0.51, 0.57], p = 2.87 × 10-2 ) in the replication sample. Our EWAS findings provide evidence that blood-based DNAm is associated with lifetime cannabis use.


Asunto(s)
Cannabis/química , Metilación de ADN , Epigénesis Genética , Epigenoma , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Trastornos Relacionados con Sustancias/genética , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Trastornos Relacionados con Sustancias/sangre , Trastornos Relacionados con Sustancias/patología
8.
Neuropsychopharmacology ; 46(3): 554-560, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32731254

RESUMEN

Numerous DNA methylation (DNAm) biomarkers of cigarette smoking have been identified in peripheral blood studies, but because of tissue specificity, blood-based studies may not detect brain-specific smoking-related DNAm differences that may provide greater insight as neurobiological indicators of smoking and its exposure effects. We report the first epigenome-wide association study (EWAS) of smoking in human postmortem brain, focusing on nucleus accumbens (NAc) as a key brain region in developing and reinforcing addiction. Illumina HumanMethylation EPIC array data from 221 decedents (120 European American [23% current smokers], 101 African American [26% current smokers]) were analyzed. DNAm by smoking (current vs. nonsmoking) was tested within each ancestry group using robust linear regression models adjusted for age, sex, cell-type proportion, DNAm-derived negative control principal components (PCs), and genotype-derived PCs. The resulting ancestry-specific results were combined via meta-analysis. We extended our NAc findings, using published smoking EWAS results in blood, to identify DNAm smoking effects that are unique (tissue-specific) vs. shared between tissues (tissue-shared). We identified seven CpGs (false discovery rate < 0.05), of which three CpGs are located near genes previously indicated with blood-based smoking DNAm biomarkers: ZIC1, ZCCHC24, and PRKDC. The other four CpGs are novel for smoking-related DNAm changes: ABLIM3, APCDD1L, MTMR6, and CTCF. None of the seven smoking-related CpGs in NAc are driven by genetic variants that share association signals with predisposing genetic risk variants for smoking, suggesting that the DNAm changes reflect consequences of smoking. Our results provide the first evidence for smoking-related DNAm changes in human NAc, highlighting CpGs that were undetected as peripheral biomarkers and may reflect brain-specific responses to smoking exposure.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Humanos , No Fumadores , Núcleo Accumbens , Fumadores , Fumar/genética
9.
Nat Commun ; 11(1): 5562, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33144568

RESUMEN

Cigarette smoking is the leading cause of preventable morbidity and mortality. Genetic variation contributes to initiation, regular smoking, nicotine dependence, and cessation. We present a Fagerström Test for Nicotine Dependence (FTND)-based genome-wide association study in 58,000 European or African ancestry smokers. We observe five genome-wide significant loci, including previously unreported loci MAGI2/GNAI1 (rs2714700) and TENM2 (rs1862416), and extend loci reported for other smoking traits to nicotine dependence. Using the heaviness of smoking index from UK Biobank (N = 33,791), rs2714700 is consistently associated; rs1862416 is not associated, likely reflecting nicotine dependence features not captured by the heaviness of smoking index. Both variants influence nearby gene expression (rs2714700/MAGI2-AS3 in hippocampus; rs1862416/TENM2 in lung), and expression of genes spanning nicotine dependence-associated variants is enriched in cerebellum. Nicotine dependence (SNP-based heritability = 8.6%) is genetically correlated with 18 other smoking traits (rg = 0.40-1.09) and co-morbidities. Our results highlight nicotine dependence-specific loci, emphasizing the FTND as a composite phenotype that expands genetic knowledge of smoking.


Asunto(s)
Predisposición Genética a la Enfermedad , Carácter Cuantitativo Heredable , Tabaquismo/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Patrón de Herencia/genética , Desequilibrio de Ligamiento/genética , Metaanálisis como Asunto , Anotación de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple/genética
10.
Infect Genet Evol ; 13: 49-55, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22995278

RESUMEN

Ubiquitous to the proteomes of all living species is the presence of proteins containing the thioredoxin (Trx)-domain. The best characterized Trx-domain containing proteins include the enzymes involved in cellular redox metabolism facilitated by their cysteine-containing active site. But not all members of the Trx-fold superfamily exhibit this catalytic motif, e.g., the phosducin-like (PhLP) family of proteins. Genome sequencing efforts have uncovered new Trx-domain containing proteins, and their redox activity and cellular functions have yet to be determined. The genome of the malaria parasite Plasmodium contains multiple thioredoxins and thioredoxin-like proteins which are of considerable interest given their role in the parasite's antioxidant defense. While adaptations within the Trx-domain have been studied, primarily with respect to redox active structures, PhLP proteins have not been examined. Using the uncharacterized phosducin-like protein from Plasmodium berghei PhLP-1, we investigated the evolution of PhLP proteins across all branches of the tree of life. As a result of our analysis, we have discovered the presence of two additional PhLP proteins in Plasmodium, PhLP-2 and PhLP-3. Sequence homology with annotated PhLP proteins in other species confirms that the Plasmodium PhLP-2 and PhLP-3 belong to the PhLP family of proteins. Furthermore, as a result of our analysis we hypothesize that the PhLP-2 thioredoxin was lost over time given its absence from higher-order eukaryotes. Probing deeper into the putative function of these proteins, inspection of the active sites indicate that PbPhLP-1 and PbPhLP-2 may be redox active while PbPhLP-3 is very likely not. The results of this phylogenetic study provide insight into the emergence of this family of Trx-domain containing proteins.


Asunto(s)
Evolución Molecular , Plasmodium/genética , Plasmodium/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Filogenia , Plasmodium/clasificación , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Alineación de Secuencia , Tiorredoxinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA