Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
ACS Appl Bio Mater ; 7(6): 4175-4192, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38830774

RESUMEN

Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.


Asunto(s)
Materiales Biocompatibles , Estimulación Eléctrica , Grafito , Hidrogeles , Factor de Crecimiento Nervioso , Regeneración Nerviosa , Hidrogeles/química , Hidrogeles/farmacología , Grafito/química , Grafito/farmacología , Regeneración Nerviosa/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Tamaño de la Partícula , Ensayo de Materiales , Ratas , Células PC12 , Ingeniería de Tejidos
2.
ACS Biomater Sci Eng ; 10(6): 3775-3791, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38722625

RESUMEN

This study investigates the electrochemical behavior of GelMA-based hydrogels and their interactions with PC12 neural cells under electrical stimulation in the presence of conducting substrates. Focusing on indium tin oxide (ITO), platinum, and gold mylar substrates supporting conductive scaffolds composed of hydrogel, graphene oxide, and gold nanorods, we explored how the substrate materials affect scaffold conductivity and cell viability. We examined the impact of an optimized electrical stimulation protocol on the PC12 cell viability. According to our findings, substrate selection significantly influences conductive hydrogel behavior, affecting cell viability and proliferation as a result. In particular, the ITO substrates were found to provide the best support for cell viability with an average of at least three times higher metabolic activity compared to platinum and gold mylar substrates over a 7 day stimulation period. The study offers new insights into substrate selection as a platform for neural cell stimulation and underscores the critical role of substrate materials in optimizing the efficacy of neural interfaces for biomedical applications. In addition to extending existing work, this study provides a robust platform for future explorations aimed at tailoring the full potential of tissue-engineered neural interfaces.


Asunto(s)
Supervivencia Celular , Hidrogeles , Neuronas , Compuestos de Estaño , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ingeniería de Tejidos/métodos , Células PC12 , Ratas , Compuestos de Estaño/química , Compuestos de Estaño/farmacología , Hidrogeles/química , Andamios del Tejido/química , Neuronas/fisiología , Neuronas/citología , Oro/química , Oro/farmacología , Grafito/química , Grafito/farmacología , Platino (Metal)/química , Estimulación Eléctrica , Nanotubos/química , Proliferación Celular
3.
Analyst ; 149(1): 63-75, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37933547

RESUMEN

Surface-enhanced Raman Spectroscopy (SERS) is a powerful optical sensing technique that amplifies the signal generated by Raman scattering by many orders of magnitude. Although the extreme sensitivity of SERS enables an extremely low limit of detection, even down to single molecule levels, it is also a primary limitation of the technique due to its tendency to equally amplify 'noise' generated by non-specifically adsorbed molecules at (or near) SERS-active interfaces. Eliminating interference noise is thus critically important to SERS biosensing and typically involves onerous extraction/purification/washing procedures and/or heavy dilution of biofluid samples. Consequently, direct analysis within biofluid samples or in vivo environments is practically impossible. In this study, an anti-fouling coating of recombinant human Lubricin (LUB) was self-assembled onto AuNP-modified glass slides via a simple drop-casting method. A series of Raman spectra were collected using rhodamine 6G (R6G) as a model analyte, which was spiked into NaCl solution or unprocessed whole blood. Likewise, we demonstrate the same sensing system for the quantitative detection of L-cysteine spiked in undiluted milk. It was demonstrated for the first time that LUB coating can mitigate the deleterious effect of fouling in a SERS sensor without compromising the detection of a target analyte, even in a highly fouling, complex medium like whole blood or milk. This feat is achieved through a molecular sieving property of LUB that separates small analytes from large fouling species directly at the sensing interface resulting in SERS spectra with low background (i.e., noise) levels and excellent analyte spectral fidelity. These findings indicate the great potential for using LUB coatings together with an analyte-selective layer to form a hierarchical separation system for SERS sensing of relevant analytes directly in complex biological media, aquaculture, food matrix or environmental samples.


Asunto(s)
Incrustaciones Biológicas , Técnicas Biosensibles , Humanos , Espectrometría Raman/métodos , Técnicas Biosensibles/métodos , Incrustaciones Biológicas/prevención & control , Glicoproteínas
4.
J Mater Chem B ; 11(3): 581-593, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36533419

RESUMEN

The development of electroactive cell-laden hydrogels (bioscaffolds) has gained interest in neural tissue engineering research due to their inherent electrical properties that can induce the regulation of cell behaviour. Hydrogels combined with electrically conducting materials can respond to external applied electric fields, where these stimuli can promote electro-responsive cell growth and proliferation. A successful neural interface for electrical stimulation should present the desired stable electrical properties, such as high conductivity, low impedance, increased charge storage capacity and similar mechanical properties related to a target neural tissue. We report how different electrical stimulation protocols can impact neuronal cells' survival and proliferation when using cell-laden GelMA/GO hydrogels. The rat pheochromocytoma cell line, PC12s encapsulated into hydrogels showed an increased proliferation behaviour with increasing current amplitudes applied. Furthermore, the presence of GO in GelMA hydrogels enhanced the metabolic activity and DNA content of PC12s compared with GelMA alone. Similarly, hydrogels provided survival of encapsulated cells at higher current amplitudes when compared to cells seeded onto ITO flat surfaces, which expressed significant cell death at a current amplitude of 2.50 mA. Our findings provide new rational choices for electroactive hydrogels and electrical stimulation with broad potential applications in neural tissue engineering research.


Asunto(s)
Hidrogeles , Andamios del Tejido , Ratas , Animales , Hidrogeles/farmacología , Supervivencia Celular , Estimulación Eléctrica , Proliferación Celular
5.
ACS Sens ; 7(11): 3379-3388, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36374944

RESUMEN

Improving outcomes for cancer patients during treatment and monitoring for cancer recurrence requires personalized care which can only be achieved through regular surveillance for biomarkers. Unfortunately, routine detection for blood-based biomarkers is cost-prohibitive using currently specialized laboratories. Using a rapid self-assembly sensing interface amenable to methods of mass production, we demonstrate the ability to detect and quantify a small carbohydrate-based cancer biomarker, Tn antigen (αGalNAc-Ser/Thr) in a small volume of blood, using a test format strip reminiscent of a blood glucose test. The detection of Tn antigen at picomolar levels is achieved through a new transduction mechanism based on the impact of Tn antigen interactions on the molecular dynamic motion of a lectin cross-linked lubricin antifouling brush. In tests performed on retrospective blood plasma samples from patients presenting three different tumor types, differentiation between healthy and diseased patients was achieved, highlighting the clinical potential for cancer monitoring.


Asunto(s)
Neoplasias , Sistemas de Atención de Punto , Humanos , Estudios Retrospectivos , Neoplasias/diagnóstico , Carbohidratos
6.
J Control Release ; 352: 35-46, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36228955

RESUMEN

Electroactive polymers (EAPs) have been investigated as materials for use in a range of biomedical applications, ranging from cell culture, electrical stimulation of cultured cells as well as controlled delivery of growth factors and drugs. Despite their excellent drug delivery ability, EAPs are susceptible to biofouling thus they often require surface functionalisation with antifouling coatings to limit unwanted non-specific protein adsorption. Here we demonstrate the surface modification of para toluene sulfonate (pTS) doped polypyrrole with the glycoprotein lubricin (LUB) to produce a self-assembled coating that both prevents surface biofouling while also serving as a high-capacity reservoir for cationic drugs which can then be released passively via diffusion or actively via an applied electrical potential. We carried out our investigation in two parts where we initially assessed the antifouling and cationic drug delivery ability of LUB tethered on a gold surface using quartz crystal microbalance with dissipation monitoring (QCM) to monitor molecular interactions occurring on a gold sensor surface. After confirming the ability of tethered LUB nano brush layers on a gold surface, we introduced an electrochemically grown EAP layer to act as the immobilisation surface for LUB before subsequently introducing the cationic drug doxorubicin hydrochloride (DOX). The release of cationic drug was then investigated under passive and electrochemically stimulated conditions. High-performance liquid chromatography (HPLC) was then carried out to quantify the amount of DOX released. It was shown that the amount of DOX released from nano brush layers of LUB tethered on gold and EAP surfaces could be increased by up to 30% per minute by applying a positive electrochemically stimulating pulse at 0.8 V for one minute. Using bovine serum albumin (BSA), we show that DOX loaded LUB tethered on para toluene sulfonic acid (pTS) doped polypyrrole retained antifouling ability of up to 75% when compared to unloaded tethered LUB. This work demonstrates the unique, novel ability of tethered LUB to actively participate in the delivery of cationic therapeutics on different substrate surfaces. This study could lead to the development of versatile multifunctional biomaterials for use in wide range of biomedical applications, such as dual drug delivery and lubricating coatings, dual drug delivery and antifouling coatings, cellular recording and stimulation.


Asunto(s)
Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Polímeros/química , Liberación de Fármacos , Pirroles , Glicoproteínas , Adsorción , Oro , Tolueno , Propiedades de Superficie
7.
ACS Biomater Sci Eng ; 7(7): 3340-3350, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34125518

RESUMEN

Synthetic materials designed for improved biomimicry of the extracellular matrix must contain fibrous, bioactive, and mechanical cues. Self-assembly of low molecular weight gelator (LMWG) peptides Fmoc-DIKVAV (Fmoc-aspartic acid-isoleucine-lysine-valine-alanine-valine) and Fmoc-FRGDF (Fmoc-phenylalanine-arginine-glycine-aspartic acid-phenylalanine) creates fibrous and bioactive hydrogels. Polysaccharides such as agarose are biocompatible, degradable, and non-toxic. Agarose and these Fmoc-peptides have both demonstrated efficacy in vitro and in vivo. These materials have complementary properties; agarose has known mechanics in the physiological range but is inert and would benefit from bioactive and topographical cues found in the fibrous, protein-rich extracellular matrix. Fmoc-DIKVAV and Fmoc-FRGDF are synthetic self-assembling peptides that present bioactive cues "IKVAV" and "RGD" designed from the ECM proteins laminin and fibronectin. The work presented here demonstrates that the addition of agarose to Fmoc-DIKVAV and Fmoc-FRGDF results in physical characteristics that are dependent on agarose concentration. The networks are peptide-dominated at low agarose concentrations, and agarose-dominated at high agarose concentrations, resulting in distinct changes in structural morphology. Interestingly, at mid-range agarose concentration, a hybrid network is formed with structural similarities to both peptide and agarose systems, demonstrating reinforced mechanical properties. Bioactive-LMWG polysaccharide hydrogels demonstrate controllable microenvironmental properties, providing the ability for tissue-specific biomaterial design for tissue engineering and 3D cell culture.


Asunto(s)
Hidrogeles , Péptidos , Materiales Biocompatibles , Fenilalanina , Polisacáridos
8.
ACS Appl Bio Mater ; 3(11): 8032-8039, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35019542

RESUMEN

Surface fouling is a major problem faced by bionic implants (e.g., cochlear implants, pacemakers), where the adsorption of unwanted biomolecules has a detrimental effect on interfacial charge transfer processes, which severely impairs their capacity to sense and transmit electrical signals with high fidelity. Polypyrrole (PPy) is a conductive polymer whose naturally high impedance, ionic and electric conductivity, mechanical "softness", and biocompatibility make it a leading candidate for next-generation neural electrode interfaces. However, PPy (and related conductive polymer) surfaces are susceptible to surface fouling upon exposure to biological fluids (e.g., blood, perilymph, saliva), which compromises performance and shortens its expected working lifespan. Here, we report the ability of lubricin (LUB) coatings, a rapidly self-assembling, biological antiadhesive glycoprotein, to mitigate the harmful electrochemical effects caused by the surface fouling of electrochemically grown PPy films. LUB, a biological antiadhesive glycoprotein, undergoes rapid self-assembly and adheres strongly to most interfaces, including PPy, resulting in an easy-to-apply and highly efficacious coating. The LUB-coated PPy electrodes are electrochemically characterized, and its antifouling properties are assessed against concentrated solutions of bovine serum albumin (BSA) and following long-term exposure to artificial perilymph (AP). Periodic impedance measurement conducted over 6 days in AP solution demonstrates the high stability and capacity of the LUB coatings to maintain stable impedance values under real-world mimicking conditions.

9.
J Mater Sci Mater Med ; 28(11): 172, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28956202

RESUMEN

Trilayered polypyrrole (PPy) actuators have high stress density, low modulus and have wide potential biological applications including use in artificial muscles and in limb prosthesis after limb amputation. This article examines the in vivo biocompatibility of actuators in muscle using rabbit models. The actuators were specially designed with pores to encourage tissue in growth; this study also assessed the effect of such pores on the stability of the actuators in vivo. Trilayered PPy actuators were either laser cut with 150 µm pores or left pore-less and implanted into rabbit muscle for 3 days, 2 weeks, 4 weeks and 8 weeks and retrieved subsequently for histological analysis. In a second set of experiments, the cut edges of pores in porous actuator strips were further sealed by PPy after laser cutting to further improve its stability in vivo. Porous actuators with and without PPy sealing of pore edges were implanted intramuscularly for 4 and 8 weeks and assessed with histology. Pore-less actuators incited a mild inflammatory response, becoming progressively walled off by a thin layer of fibrous tissue. Porous actuators showed increased PPy fragmentation and delamination with associated greater foreign body response compared to pore-less actuators. The PPy fragmentation was minimized when the pore edges were sealed off by PPy after laser cutting showing less PPy debris. Laser cutting of the actuators with pores destabilizes the PPy. This can be overcome by sealing the cut edges of the pores with PPy after laser. The findings in this article have implications in future design and manufacturing of PPy actuator for use in vivo.


Asunto(s)
Miembros Artificiales , Materiales Biocompatibles/química , Materiales Biocompatibles Revestidos/química , Polímeros/química , Prótesis e Implantes , Pirroles/química , Amputación Quirúrgica/rehabilitación , Animales , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/farmacología , Ensayo de Materiales , Polímeros/farmacología , Porosidad , Implantación de Prótesis , Pirroles/farmacología , Conejos
10.
Sci Rep ; 7(1): 5837, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28724980

RESUMEN

Three-dimensional (3D) bioprinting is driving major innovations in the area of cartilage tissue engineering. Extrusion-based 3D bioprinting necessitates a phase change from a liquid bioink to a semi-solid crosslinked network achieved by a photo-initiated free radical polymerization reaction that is known to be cytotoxic. Therefore, the choice of the photocuring conditions has to be carefully addressed to generate a structure stiff enough to withstand the forces phisiologically applied on articular cartilage, while ensuring adequate cell survival for functional chondral repair. We recently developed a handheld 3D printer called "Biopen". To progress towards translating this freeform biofabrication tool into clinical practice, we aimed to define the ideal bioprinting conditions that would deliver a scaffold with high cell viability and structural stiffness relevant for chondral repair. To fulfill those criteria, free radical cytotoxicity was confined by a co-axial Core/Shell separation. This system allowed the generation of Core/Shell GelMa/HAMa bioscaffolds with stiffness of 200KPa, achieved after only 10 seconds of exposure to 700 mW/cm2 of 365 nm UV-A, containing >90% viable stem cells that retained proliferative capacity. Overall, the Core/Shell handheld 3D bioprinting strategy enabled rapid generation of high modulus bioscaffolds with high cell viability, with potential for in situ surgical cartilage engineering.


Asunto(s)
Bioimpresión/métodos , Cartílago Articular/cirugía , Regeneración , Animales , Muerte Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Módulo de Elasticidad , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Luz , Metacrilatos/química , Ovinos , Andamios del Tejido/química
11.
Biofabrication ; 8(2): 025013, 2016 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-27213861

RESUMEN

Tissue engineering scaffolds for nerve regeneration, or artificial nerve conduits, are particularly challenging due to the high level of complexity the structure of the nerve presents. The list of requirements for artificial nerve conduits is long and includes the ability to physically guide nerve growth using physical and chemical cues as well as electrical stimulation. Combining these characteristics into a conduit, while maintaining biocompatibility and biodegradability, has not been satisfactorily achieved by currently employed fabrication techniques. Here we present a method combining pultrusion and wet-spinning techniques facilitating incorporation of pre-formed filaments into ionically crosslinkable hydrogels. This new biofabrication technique allows the incorporation of conducting or drug-laden filaments, controlled guidance channels and living cells into hydrogels, creating new improved conduit designs.


Asunto(s)
Hidrogeles/química , Neuronas/citología , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química , Alginatos/química , Animales , Materiales Biocompatibles/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Regeneración Nerviosa , Células PC12 , Ratas
12.
J Biomed Mater Res A ; 104(4): 853-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26646762

RESUMEN

In the current study, we describe the synthesis, material characteristics, and cytocompatibility of conducting poly (ɛ-caprolactone) (PCL)-based nano-composite films. Electrically conducting carbon nano-fillers (carbon nano-fiber (CNF), nano-graphite (NG), and liquid exfoliated graphite (G)) were used to prepare porous film type scaffolds using modified solvent casting methods. The electrical conductivity of the nano-composite films was increased when carbon nano-fillers were incorporated in the PCL matrix. CNF-based nano-composite films showed the highest increase in electrical conductivity. The presence of an ionic solution significantly improved the conductivity of some of the polymers, however at least 24 h was required to absorb the simulated ion solutions. CNF-based nano-composite films were found to have good thermo-mechanical properties compared to other conducting polymer films due to better dispersion and alignment in the critical direction. Increased nano-filler content increased the crystallisation temperature. Analysis of cell viability revealed no increase in cell death on any of the polymers compared to tissue culture plastic controls, or compared to PCL polymer without nano-composites. The scaffolds showed some variation when tested for PC12 cell attachment and proliferation, however all the polymers supported PC12 attachment and differentiation in the absence of cell adhesion molecules. In general, CNF-based nano-composite films with highest electrical conductivity and moderate roughness showed highest cell attachment and proliferation. These polymers are promising candidates for use in neural applications in the area of bionics and tissue engineering due to their unique properties.


Asunto(s)
Caproatos/química , Lactonas/química , Nanocompuestos/química , Andamios del Tejido/química , Animales , Adhesión Celular , Proliferación Celular , Conductividad Eléctrica , Grafito/química , Células PC12 , Polímeros/química , Ratas , Ingeniería de Tejidos
13.
Dev Neurobiol ; 76(5): 551-65, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26251299

RESUMEN

Clustering of acetylcholine receptors (AChR) at the postsynaptic membrane is a crucial step in the development of neuromuscular junctions (NMJ). During development and after denervation, aneural AChR clusters form on the sarcolemma. Recent studies suggest that these receptors are critical for guiding and initiating synaptogenesis. The aim of this study is to investigate the effect of agrin and laminin-1; agents with known AChR clustering activity; on NMJ formation and muscle maturation. Primary myoblasts were differentiated in vitro on collagen, laminin or collagen and laminin-coated surfaces in the presence or absence of agrin and laminin. The pretreated cells were then subject to innervation by PC12 cells. The number of neuromuscular junctions was assessed by immunocytochemical co-localization of AChR clusters and the presynaptic marker synaptophysin. Functional neuromuscular junctions were quantitated by analysis of the level of spontaneous as well as neuromuscular blocker responsive contractile activity and muscle maturation was assessed by the degree of myotube striation. Agrin alone did not prime muscle for innervation while a combination of agrin and laminin pretreatment increased the number of neuromuscular junctions formed and enhanced acetylcholine based neurotransmission and myotube striation. This study has direct clinical relevance for treatment of denervation injuries and creating functional neuromuscular constructs for muscle tissue repair.


Asunto(s)
Agrina/metabolismo , Laminina/metabolismo , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Agrina/administración & dosificación , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo , Laminina/administración & dosificación , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Mioblastos/metabolismo , Mioblastos/ultraestructura , Unión Neuromuscular/ultraestructura , Células PC12 , Ratas
14.
Tissue Eng Part C Methods ; 21(4): 385-93, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25296166

RESUMEN

Conductive polymers (CPs) are organic materials that hold great promise for biomedicine. Potential applications include in vitro or implantable electrodes for excitable cell recording and stimulation and conductive scaffolds for cell support and tissue engineering. In this study, we demonstrate the utility of electroactive CP polypyrrole (PPy) containing the anionic dopant dodecylbenzenesulfonate (DBS) to differentiate novel clinically relevant human neural stem cells (hNSCs). Electrical stimulation of PPy(DBS) induced hNSCs to predominantly ß-III Tubulin (Tuj1) expressing neurons, with lower induction of glial fibrillary acidic protein (GFAP) expressing glial cells. In addition, stimulated cultures comprised nodes or clusters of neurons with longer neurites and greater branching than unstimulated cultures. Cell clusters showed a similar spatial distribution to regions of higher conductivity on the film surface. Our findings support the use of electrical stimulation to promote neuronal induction and the biocompatibility of PPy(DBS) with hNSCs and opens up the possibility of identifying novel mechanisms of fate determination of differentiating human stem cells for advanced in vitro modeling, translational drug discovery, and regenerative medicine.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Polímeros/química , Pirroles/química , Ingeniería de Tejidos , Investigación Biomédica Traslacional , Antígenos de Diferenciación/metabolismo , Estimulación Eléctrica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Neuronas/citología
15.
J Neural Eng ; 11(4): 046006, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24921154

RESUMEN

OBJECTIVE: We have developed an image analysis methodology for quantifying the anisotropy of neuronal projections on patterned substrates. APPROACH: Our method is based on the fitting of smoothing splines to the digital traces produced using a non-maximum suppression technique. This enables precise estimates of the local tangents uniformly along the neurite length, and leads to unbiased orientation distributions suitable for objectively assessing the anisotropy induced by tailored surfaces. MAIN RESULTS: In our application, we demonstrate that carbon nanotubes arrayed in parallel bundles over gold surfaces induce a considerable neurite anisotropy; a result which is relevant for regenerative medicine. SIGNIFICANCE: Our pipeline is generally applicable to the study of fibrous materials on 2D surfaces and should also find applications in the study of DNA, microtubules, and other polymeric materials.


Asunto(s)
Neuritas/fisiología , Animales , Anisotropía , Interpretación Estadística de Datos , Oro , Procesamiento de Imagen Asistido por Computador , Nanotubos de Carbono , Regeneración Nerviosa , Células PC12 , Ratas , Propiedades de Superficie
16.
Int J Artif Organs ; 37(4): 277-91, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24811182

RESUMEN

Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.


Asunto(s)
Regeneración Tisular Dirigida/métodos , Regeneración Nerviosa , Enfermedades del Sistema Nervioso/cirugía , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles , Terapia Genética , Humanos , Nanomedicina , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/fisiopatología , Trasplante de Células Madre , Andamios del Tejido , Resultado del Tratamiento
17.
Adv Mater ; 21(43): 4393-7, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26042951

RESUMEN

A biosynthetic platform composed of a conducting polypyrrole sheet embedded with unidirectional biodegradable polymer fibers is described (see image; scale bar = 50 µm). Such hybrid systems can promote rapid directional nerve growth for neuro-regenerative scaffolds and act as interfaces between the electronic circuitry of medical bionic devices and the nervous system.

18.
Stem Cells ; 25(6): 1364-74, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17303817

RESUMEN

Bone marrow (BM)-derived cells (BMCs) have demonstrated a myogenic tissue remodeling capacity. However, because the myoremodeling is limited to approximately 1%-3% of recipient muscle fibers in vivo, there is disagreement regarding the clinical relevance of BM for therapeutic application in myodegenerative conditions. This study sought to determine whether rare selectable cell surface markers (in particular, c-Kit) could be used to identify a BMC population with enhanced myoremodeling capacity. Dystrophic mdx muscle remodeling has been achieved using BMCs sorted by expression of stem cell antigen-1 (Sca-1). The inference that Sca-1 is also a selectable marker associated with myoremodeling capacity by muscle-derived cells prompted this study of relative myoremodeling contributions from BMCs (compared with muscle cells) on the basis of expression or absence of Sca-1. We show that myoremodeling activity does not differ in cells sorted solely on the basis of Sca-1 from either muscle or BM. In addition, further fractionation of BM to a more mesenchymal-like cell population with lineage markers and CD45 subsequently revealed a stronger selectability of myoremodeling capacity with c-Kit/Sca-1 (p < .005) than with Sca-1 alone. These results suggest that c-Kit may provide a useful selectable marker that facilitates selection of cells with an augmented myoremodeling capacity derived from BM and possibly from other nonmuscle tissues. In turn, this may provide a new methodology for rapid isolation of myoremodeling capacities from muscle and nonmuscle tissues. Disclosure of potential conflicts of interest is found at the end of this article.


Asunto(s)
Antígenos Ly/análisis , Células de la Médula Ósea/fisiología , Proteínas de la Membrana/análisis , Músculos/fisiología , Proteínas Proto-Oncogénicas c-kit/análisis , Regeneración , Animales , Antígenos Ly/metabolismo , Biomarcadores/análisis , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Fraccionamiento Celular , Citometría de Flujo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/citología , Proteínas Proto-Oncogénicas c-kit/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA