Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2400740121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743629

RESUMEN

The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.


Asunto(s)
Citosol , Glutarredoxinas , Glutatión , Proteínas Hierro-Azufre , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Glutatión/metabolismo , Mitocondrias/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Mitocondriales/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(39): E9085-E9094, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30201724

RESUMEN

Maturation of iron-sulfur (Fe-S) proteins in eukaryotes requires complex machineries in mitochondria and cytosol. Initially, Fe-S clusters are assembled on dedicated scaffold proteins and then are trafficked to target apoproteins. Within the cytosolic Fe-S protein assembly (CIA) machinery, the conserved P-loop nucleoside triphosphatase Nbp35 performs a scaffold function. In yeast, Nbp35 cooperates with the related Cfd1, which is evolutionary less conserved and is absent in plants. Here, we investigated the potential scaffold function of human CFD1 (NUBP2) in CFD1-depleted HeLa cells by measuring Fe-S enzyme activities or 55Fe incorporation into Fe-S target proteins. We show that CFD1, in complex with NBP35 (NUBP1), performs a crucial role in the maturation of all tested cytosolic and nuclear Fe-S proteins, including essential ones involved in protein translation and DNA maintenance. CFD1 also matures iron regulatory protein 1 and thus is critical for cellular iron homeostasis. To better understand the scaffold function of CFD1-NBP35, we resolved the crystal structure of Chaetomium thermophilum holo-Cfd1 (ctCfd1) at 2.6-Å resolution as a model Cfd1 protein. Importantly, two ctCfd1 monomers coordinate a bridging [4Fe-4S] cluster via two conserved cysteine residues. The surface-exposed topology of the cluster is ideally suited for both de novo assembly and facile transfer to Fe-S apoproteins mediated by other CIA factors. ctCfd1 specifically interacted with ATP, which presumably associates with a pocket near the Cfd1 dimer interface formed by the conserved Walker motif. In contrast, ctNbp35 preferentially bound GTP, implying differential regulation of the two fungal scaffold components during Fe-S cluster assembly and/or release.


Asunto(s)
Apoproteínas/química , Chaetomium/química , Proteínas Fúngicas/química , Proteínas de Unión al GTP/química , Proteína 1 Reguladora de Hierro/química , Proteínas Hierro-Azufre/química , Secuencias de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Dominio Catalítico , Chaetomium/genética , Chaetomium/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HeLa , Humanos , Proteína 1 Reguladora de Hierro/genética , Proteína 1 Reguladora de Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo
4.
J Biol Chem ; 292(33): 13879-13889, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28615450

RESUMEN

Viperin (RSAD2) is an interferon-stimulated antiviral protein that belongs to the radical S-adenosylmethionine (SAM) enzyme family. Viperin's iron-sulfur (Fe/S) cluster is critical for its antiviral activity against many different viruses. CIA1 (CIAO1), an essential component of the cytosolic iron-sulfur protein assembly (CIA) machinery, is crucial for Fe/S cluster insertion into viperin and hence for viperin's antiviral activity. In the CIA pathway, CIA1 cooperates with CIA2A, CIA2B, and MMS19 targeting factors to form various complexes that mediate the dedicated maturation of specific Fe/S recipient proteins. To date, however, the mechanisms of how viperin acquires its radical SAM Fe/S cluster to gain antiviral activity are poorly understood. Using co-immunoprecipitation and 55Fe-radiolabeling experiments, we therefore studied the roles of CIA2A, CIA2B, and MMS19 for Fe/S cluster insertion. CIA2B and MMS19 physically interacted with the C terminus of viperin and used CIA1 as the primary viperin-interacting protein. In contrast, CIA2A bound to viperin's N terminus in a CIA1-, CIA2B-, and MMS19-independent fashion. Of note, the observed interaction of both CIA2 isoforms with a single Fe/S target protein is unprecedented in the CIA pathway. 55Fe-radiolabeling experiments with human cells depleted of CIA1, CIA2A, CIA2B, or MMS19 revealed that CIA1, but none of the other CIA factors, is predominantly required for 55Fe/S cluster incorporation into viperin. Collectively, viperin maturation represents a novel CIA pathway with a minimal requirement of the CIA-targeting factors and represents a new paradigm for the insertion of the Fe/S cofactor into a radical SAM protein.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Hierro-Azufre/metabolismo , Metalochaperonas/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Proteínas Portadoras/genética , Células HEK293 , Humanos , Inmunoprecipitación , Hierro/química , Hierro/metabolismo , Radioisótopos de Hierro , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Metalochaperonas/antagonistas & inhibidores , Metalochaperonas/química , Metalochaperonas/genética , Metaloproteínas , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/genética , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Factores de Transcripción/genética
5.
Cell Metab ; 18(2): 187-98, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23891004

RESUMEN

Numerous cytosolic and nuclear proteins involved in metabolism, DNA maintenance, protein translation, or iron homeostasis depend on iron-sulfur (Fe/S) cofactors, yet their assembly is poorly defined. Here, we identify and characterize human CIA2A (FAM96A), CIA2B (FAM96B), and CIA1 (CIAO1) as components of the cytosolic Fe/S protein assembly (CIA) machinery. CIA1 associates with either CIA2A or CIA2B and the CIA-targeting factor MMS19. The CIA2B-CIA1-MMS19 complex binds to and facilitates assembly of most cytosolic-nuclear Fe/S proteins. In contrast, CIA2A specifically matures iron regulatory protein 1 (IRP1), which is critical for cellular iron homeostasis. Surprisingly, a second layer of iron regulation involves the stabilization of IRP2 by CIA2A binding or upon depletion of CIA2B or MMS19, even though IRP2 lacks an Fe/S cluster. In summary, CIA2B-CIA1-MMS19 and CIA2A-CIA1 assist different branches of Fe/S protein assembly and intimately link this process to cellular iron regulation via IRP1 Fe/S cluster maturation and IRP2 stabilization.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Hierro/metabolismo , Metalochaperonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Células HeLa , Homeostasis , Humanos , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Metalochaperonas/genética , Metaloproteínas , Proteínas Nucleares/genética , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño , Factores de Transcripción/metabolismo
6.
Mol Cell Biol ; 28(17): 5517-28, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18573874

RESUMEN

The maturation of cytosolic iron-sulfur (Fe/S) proteins in mammalian cells requires components of the mitochondrial iron-sulfur cluster assembly and export machineries. Little is known about the cytosolic components that may facilitate the assembly process. Here, we identified the cytosolic soluble P-loop NTPase termed huNbp35 (also known as Nubp1) as an Fe/S protein, and we defined its role in the maturation of Fe/S proteins in HeLa cells. Depletion of huNbp35 by RNA interference decreased cell growth considerably, indicating its essential function. The deficiency in huNbp35 was associated with an impaired maturation of the cytosolic Fe/S proteins glutamine phosphoribosylpyrophosphate amidotransferase and iron regulatory protein 1 (IRP1), while mitochondrial Fe/S proteins remained intact. Consequently, huNbp35 is specifically involved in the formation of extramitochondrial Fe/S proteins. The impaired maturation of IRP1 upon huNbp35 depletion had profound consequences for cellular iron metabolism, leading to decreased cellular H-ferritin, increased transferrin receptor levels, and higher transferrin uptake. These properties clearly distinguished huNbp35 from its yeast counterpart Nbp35, which is essential for cytosolic-nuclear Fe/S protein assembly but plays no role in iron regulation. huNbp35 formed a complex with its close homologue huCfd1 (also known as Nubp2) in vivo, suggesting the existence of a heteromeric P-loop NTPase complex that is required for both cytosolic Fe/S protein assembly and cellular iron homeostasis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Citosol/metabolismo , Homeostasis , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Aconitato Hidratasa/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Proliferación Celular , Citosol/enzimología , Ferritinas/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Células HeLa , Humanos , Proteína 1 Reguladora de Hierro/metabolismo , Ratones , Datos de Secuencia Molecular , Unión Proteica , Biosíntesis de Proteínas , Interferencia de ARN , Receptores de Transferrina/biosíntesis , Elementos de Respuesta
7.
Mol Cell Biol ; 26(15): 5675-87, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16847322

RESUMEN

The biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is a complex process involving more than 20 components. So far, functional investigations have mainly been performed in Saccharomyces cerevisiae. Here, we have analyzed the role of the human cysteine desulfurase Nfs1 (huNfs1), which serves as a sulfur donor in biogenesis. The protein is located predominantly in mitochondria, but small amounts are present in the cytosol/nucleus. huNfs1 was depleted efficiently in HeLa cells by a small interfering RNA (siRNA) approach, resulting in a drastic growth retardation and striking morphological changes of mitochondria. The activities of both mitochondrial and cytosolic Fe/S proteins were strongly impaired, demonstrating that huNfs1 performs an essential function in Fe/S protein biogenesis in human cells. Expression of murine Nfs1 (muNfs1) in huNfs1-depleted cells restored both growth and Fe/S protein activities to wild-type levels, indicating the specificity of the siRNA depletion approach. No complementation of the growth retardation was observed, when muNfs1 was synthesized without its mitochondrial presequence. This extramitochondrial muNfs1 did not support maintenance of Fe/S protein activities, neither in the cytosol nor in mitochondria. In conclusion, our study shows that the essential huNfs1 is required inside mitochondria for efficient maturation of cellular Fe/S proteins. The results have implications for the regulation of iron homeostasis by cytosolic iron regulatory protein 1.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Citosol/enzimología , Proteínas Hierro-Azufre/biosíntesis , Hierro/metabolismo , Mitocondrias/enzimología , Secuencia de Aminoácidos , Animales , Liasas de Carbono-Azufre/genética , Vectores Genéticos , Células HeLa , Homeostasis , Humanos , Proteínas Hierro-Azufre/genética , Ratones , Mitocondrias/ultraestructura , Proteínas Mitocondriales , Datos de Secuencia Molecular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Sulfurtransferasas
8.
BMC Biochem ; 5: 8, 2004 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-15200686

RESUMEN

BACKGROUND: Apyrases are divalent ion dependent tri- and dinucleotide phosphatases with different substrate specificity. The intracellular lysosomal apyrase LALP70 is also expressed as a splice variant (LALP70v) lacking a VSFASSQQ motif in the center of the molecule (aminoacids 287-294). However, the functional significance of this motif is unknown. In this report we used a thin layer chromatography approach to study separately the UTPase and UDPase activity of the two LALP-enzymes. RESULTS: We show, that LALP70 and LALP70v cleaved UTP to UDP in a calcium independent manner. In contrast, the cleavage of UDP to UMP was strongly calcium dependent for LALP70, but calcium independent for LALP70v. CONCLUSIONS: The VSFASSQQ motif not only influences the substrate specificity of LALP70, but it confers calcium sensitivity to LALP70 during the UDP cleavage. Whether this is due to direct binding of calcium to this motif or to a conformational change of the enzyme, remains to be elucidated.


Asunto(s)
Apirasa/química , Calcio/farmacología , Pirofosfatasas/química , Secuencias de Aminoácidos , Animales , Apirasa/metabolismo , Células COS , Chlorocebus aethiops , Lisosomas/enzimología , Pirofosfatasas/metabolismo , Especificidad por Sustrato , Uridina Difosfato/metabolismo , Uridina Trifosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA