Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Ther Drug Monit ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39264345

RESUMEN

BACKGROUND: Pharmacogenetic testing in clinical settings has improved the safety and efficacy of drug treatment. There is a growing number of studies evaluating pharmacogenetic implementation and identifying barriers and facilitators. However, no review has focused on bridging the gap between identifying barriers and facilitators of testing and the clinical strategies adopted in response. This review was conducted to understand the implementation and evaluation strategies of pharmacogenetic testing programs. METHODS: A PRISMA-compliant scoping review was conducted. The included studies discussed pharmacogenetic testing programs implemented in a hospital setting. Quantitative, qualitative, and mixed design methods were included. RESULTS: A total of 232 of the 7043 articles that described clinical pharmacogenetic programs were included. The most common specialties that described pharmacogenetic implementation were psychiatry (26%) and oncology (16%), although many studies described institutional programs implemented across multiple specialties (19%). Different specialties reported different clinical outcomes, but all reported similar program performance indicators, such as test uptake and the number of times the test recommendations were followed. There were benefits and drawbacks to delivering test results through research personnel, pharmacists, and electronic alerts, but active engagement of physicians was necessary for the incorporation of pharmacogenetic results into clinical decision making. CONCLUSIONS: Further research is required on the maintenance and sustainability of pharmacogenetic testing initiatives. These findings provide an overview of the implementation and evaluation strategies of different specialties that can be used to improve pharmacogenetic testing.

2.
Biol Methods Protoc ; 9(1): bpae012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566776

RESUMEN

While the detection of single-nucleotide variants (SNVs) is important for evaluating human health and disease, most genotyping methods require a nucleic acid extraction step and lengthy analytical times. Here, we present a protocol which utilizes the integration of locked nucleic acids (LNAs) into self-annealing loop primers for the allelic discrimination of five isocitrate dehydrogenase 1 R132 (IDH1-R132) variants using loop-mediated isothermal amplification (LAMP). This genotyping panel was initially evaluated using purified synthetic DNA to show proof of specific SNV discrimination. Additional evaluation using glioma tumor lysates with known IDH1-R132 mutational status demonstrated specificity in approximately 35 min without the need for a nucleic acid extraction purification step. This LNA-LAMP-based genotyping assay can detect single base differences in purified nucleic acids or tissue homogenates, including instances where the variant of interest is present in an excess of background wild-type DNA. The pH-based colorimetric indicator of LNA-LAMP facilitates convenient visual interpretation of reactions, and we demonstrate successful translation to an end-point format using absorbance ratio, allowing for an alternative and objective approach for differentiating between positive and negative reactions. Importantly, the LNA-LAMP genotyping panel is highly reproducible, with no false-positive or false-negative results observed.

3.
PLoS One ; 18(9): e0291666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37733671

RESUMEN

The R132H isocitrate dehydrogenase one (IDH1) mutation is a prognostic biomarker present in a subset of gliomas and is associated with heightened survival when paired with aggressive surgical resection. In this study, we establish proof-of-principle for rapid colorimetric detection of the IDH1-R132H mutation in tumor samples in under 1 hour without the need for a nucleic acid extraction. Colorimetric peptide nucleic acid loop-mediated isothermal amplification (CPNA-LAMP) utilizes 4 conventional LAMP primers, a blocking PNA probe complementary to the wild-type sequence, and a self-annealing loop primer complementary to the single nucleotide variant to only amplify the DNA sequence containing the mutation. This assay was evaluated using IDH1-WT or IDH1-R132H mutant synthetic DNA, wild-type or IDH1-R132H mutant U87MG cell lysates, and tumor lysates from archived patient samples in which the IDH1 status was previously determined using immunohistochemistry (IHC). Reactions were performed using a hot water bath and visually interpreted as positive by a pink-to-yellow color change. Results were subsequently verified using agarose gel electrophoresis. CPNA-LAMP successfully detected the R132H single nucleotide variant, and results from tumor lysates yielded 100% concordance with IHC results, including instances when the single nucleotide variant was limited to a portion of the tumor. Importantly, when testing the tumor lysates, there were no false positive or false negative results.


Asunto(s)
Glioma , Ácidos Nucleicos de Péptidos , Humanos , Isocitrato Deshidrogenasa/genética , Colorimetría , Glioma/diagnóstico , Glioma/genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA