Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 14(3): e0213699, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30870480

RESUMEN

Francisella tularensis is a Gram-negative, facultative intracellular pathogen and the causative agent of a lethal human disease known as tularemia. Due to its extremely high virulence and potential to be used as a bioterror agent, F. tularensis is classified by the CDC as a Category A Select Agent. As an intracellular pathogen, F. tularensis during its intracellular residence encounters a number of oxidative and nitrosative stresses. The roles of the primary antioxidant enzymes SodB, SodC and KatG in oxidative stress resistance and virulence of F. tularensis live vaccine strain (LVS) have been characterized in previous studies. However, very fragmentary information is available regarding the role of peroxiredoxin of the AhpC/TSA family (annotated as AhpC) of F. tularensis SchuS4; whereas the role of AhpC of F. tularensis LVS in tularemia pathogenesis is not known. This study was undertaken to exhaustively investigate the role of AhpC in oxidative stress resistance of F. tularensis LVS and SchuS4. We report that AhpC of F. tularensis LVS confers resistance against a wide range of reactive oxygen and nitrogen species, and serves as a virulence factor. In highly virulent F. tularensis SchuS4 strain, AhpC serves as a key antioxidant enzyme and contributes to its robust oxidative and nitrosative stress resistance, and intramacrophage survival. We also demonstrate that there is functional redundancy among primary antioxidant enzymes AhpC, SodC, and KatG of F. tularensis SchuS4. Collectively, this study highlights the differences in antioxidant defense mechanisms of F. tularensis LVS and SchuS4.


Asunto(s)
Antioxidantes/fisiología , Francisella tularensis/enzimología , Estrés Oxidativo , Peroxirredoxinas/fisiología , Tularemia/microbiología , Animales , Proteínas Bacterianas/fisiología , Vacunas Bacterianas/inmunología , Francisella tularensis/patogenicidad , Prueba de Complementación Genética , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Superóxido Dismutasa/fisiología , Tularemia/inmunología , Vacunas Atenuadas/inmunología , Virulencia
2.
Endocrinology ; 158(5): 1130-1139, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28324013

RESUMEN

The acute effects of parathyroid hormone (PTH) on fibroblast growth factor 23 (FGF23) in vivo are not well understood. After a single subcutaneous PTH (1-34) injection (50 nmol/kg) in mice, FGF23 levels were assessed in plasma using assays that measure either intact alone (iFGF23) or intact/C-terminal FGF23 (cFGF23). Furthermore, FGF23 messenger RNA (mRNA) and protein levels were assessed in bone. In addition, we examined the effects of PTH treatment on FGF23 production in vitro using differentiated calvarial osteocyte-like cells. cFGF23 levels increased by three- to fivefold within 2 hours following PTH injection, which returned to baseline by 4 hours. In contrast, iFGF23 levels remained unchanged for the first 2 hours, yet declined to ∼60% by 6 hours and remained suppressed before returning to baseline after 24 hours. Using homozygous mice for an autosomal dominant hypophosphatemic rickets-FGF23 mutation or animals treated with a furin inhibitor, we showed that cFGF23 and iFGF23 levels increased equivalently after PTH injection. These findings are consistent with increased FGF23 production in bone, yet rapid cleavage of the secreted intact protein. Using primary osteocyte-like cell cultures, we showed that PTH increased FGF23 mRNA expression through cyclic adenosine monophosphate/protein kinase A, but not inositol triphosphate/protein kinase C signaling; PTH also increased furin protein levels. In conclusion, PTH injection rapidly increases FGF23 production in bone in vivo and in vitro. However, iFGF23 is rapidly degraded. At later time points through an unidentified mechanism, a sustained decrease in FGF23 production occurs.


Asunto(s)
Factores de Crecimiento de Fibroblastos/química , Factores de Crecimiento de Fibroblastos/metabolismo , Hormona Paratiroidea/administración & dosificación , Animales , Huesos/efectos de los fármacos , Huesos/metabolismo , Células Cultivadas , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Inyecciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Hormona Paratiroidea/farmacología , Fragmentos de Péptidos/sangre , Dominios Proteicos
3.
Antimicrob Agents Chemother ; 60(6): 3276-82, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26953190

RESUMEN

Bacteria require at least one pathway to rescue ribosomes stalled at the ends of mRNAs. The primary pathway for ribosome rescue is trans-translation, which is conserved in >99% of sequenced bacterial genomes. Some species also have backup systems, such as ArfA or ArfB, which can rescue ribosomes in the absence of sufficient trans-translation activity. Small-molecule inhibitors of ribosome rescue have broad-spectrum antimicrobial activity against bacteria grown in liquid culture. These compounds were tested against the tier 1 select agent Francisella tularensis to determine if they can limit bacterial proliferation during infection of eukaryotic cells. The inhibitors KKL-10 and KKL-40 exhibited exceptional antimicrobial activity against both attenuated and fully virulent strains of F. tularensis in vitro and during ex vivo infection. Addition of KKL-10 or KKL-40 to macrophages or liver cells at any time after infection by F. tularensis prevented further bacterial proliferation. When macrophages were stimulated with the proinflammatory cytokine gamma interferon before being infected by F. tularensis, addition of KKL-10 or KKL-40 reduced intracellular bacteria by >99%, indicating that the combination of cytokine-induced stress and a nonfunctional ribosome rescue pathway is fatal to F. tularensis Neither KKL-10 nor KKL-40 was cytotoxic to eukaryotic cells in culture. These results demonstrate that ribosome rescue is required for F. tularensis growth at all stages of its infection cycle and suggest that KKL-10 and KKL-40 are good lead compounds for antibiotic development.


Asunto(s)
Antibacterianos/farmacología , Francisella tularensis/efectos de los fármacos , Oxadiazoles/farmacología , Ribosomas/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Interferón gamma/farmacología , Hígado/microbiología , Macrófagos/microbiología , Ratones , Pruebas de Sensibilidad Microbiana , Células RAW 264.7 , Virulencia/efectos de los fármacos
4.
J Biol Chem ; 291(10): 5009-21, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26644475

RESUMEN

Francisella tularensis, the causative agent of a fatal human disease known as tularemia, has been used in the bioweapon programs of several countries in the past, and now it is considered a potential bioterror agent. Extreme infectivity and virulence of F. tularensis is due to its ability to evade immune detection and to suppress the host's innate immune responses. However, Francisella-encoded factors and mechanisms responsible for causing immune suppression are not completely understood. Macrophages and neutrophils generate reactive oxygen species (ROS)/reactive nitrogen species as a defense mechanism for the clearance of phagocytosed microorganisms. ROS serve a dual role; at high concentrations they act as microbicidal effector molecules that destroy intracellular pathogens, and at low concentrations they serve as secondary signaling messengers that regulate the expression of various inflammatory mediators. We hypothesized that the antioxidant defenses of F. tularensis maintain redox homeostasis in infected macrophages to prevent activation of redox-sensitive signaling components that ultimately result in suppression of pro-inflammatory cytokine production and macrophage microbicidal activity. We demonstrate that antioxidant enzymes of F. tularensis prevent the activation of redox-sensitive MAPK signaling components, NF-κB signaling, and the production of pro-inflammatory cytokines by inhibiting the accumulation of ROS in infected macrophages. We also report that F. tularensis inhibits ROS-dependent autophagy to promote its intramacrophage survival. Collectively, this study reveals novel pathogenic mechanisms adopted by F. tularensis to modulate macrophage innate immune functions to create an environment permissive for its intracellular survival and growth.


Asunto(s)
Citocinas/metabolismo , Francisella tularensis/patogenicidad , Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Células Cultivadas , Citocinas/genética , Francisella tularensis/genética , Homeostasis , Inmunidad Innata , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Mol Microbiol ; 91(5): 976-95, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24397487

RESUMEN

Francisella tularensis is a category A biodefence agent that causes a fatal human disease known as tularaemia. The pathogenicity of F. tularensis depends on its ability to persist inside host immune cells primarily by resisting an attack from host-generated reactive oxygen and nitrogen species (ROS/RNS). Based on the ability of F. tularensis to resist high ROS/RNS levels, we have hypothesized that additional unknown factors act in conjunction with known antioxidant defences to render ROS resistance. By screening a transposon insertion library of F. tularensis LVS in the presence of hydrogen peroxide, we have identified an oxidant-sensitive mutant in putative EmrA1 (FTL_0687) secretion protein. The results demonstrate that the emrA1 mutant is highly sensitive to oxidants and several antimicrobial agents, and exhibits diminished intramacrophage growth that can be restored to wild-type F. tularensis LVS levels by either transcomplementation, inhibition of ROS generation or infection in NADPH oxidase deficient (gp91Phox(-/-)) macrophages. The emrA1 mutant is attenuated for virulence, which is restored by infection in gp91Phox(-/-) mice. Further, EmrA1 contributes to oxidative stress resistance by affecting secretion of Francisella antioxidant enzymes SodB and KatG. This study exposes unique links between transporter activity and the antioxidant defence mechanisms of F. tularensis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Francisella tularensis/patogenicidad , Macrófagos/microbiología , Fusión de Membrana , Viabilidad Microbiana , Estrés Oxidativo , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Antioxidantes/metabolismo , Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Francisella tularensis/genética , Francisella tularensis/metabolismo , Genoma Bacteriano/genética , Humanos , Peróxido de Hidrógeno/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Fusión de Membrana/efectos de los fármacos , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Viabilidad Microbiana/efectos de los fármacos , Datos de Secuencia Molecular , Mutación/genética , NADPH Oxidasa 2 , NADPH Oxidasas/deficiencia , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Tularemia/microbiología , Tularemia/patología , Virulencia/efectos de los fármacos
6.
J Biol Chem ; 288(33): 23844-57, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23821549

RESUMEN

Francisella tularensis is an important human pathogen responsible for causing tularemia. F. tularensis has long been developed as a biological weapon and is now classified as a category A agent by the Centers for Disease Control because of its possible use as a bioterror agent. F. tularensis represses inflammasome; a cytosolic multi-protein complex that activates caspase-1 to produce proinflammatory cytokines IL-1ß and IL-18. However, the Francisella factors and the mechanisms through which F. tularensis mediates these suppressive effects remain relatively unknown. Utilizing a mutant of F. tularensis in FTL_0325 gene, this study investigated the mechanisms of inflammasome repression by F. tularensis. We demonstrate that muted IL-1ß and IL-18 responses generated in macrophages infected with F. tularensis live vaccine strain (LVS) or the virulent SchuS4 strain are due to a predominant suppressive effect on TLR2-dependent signal 1. Our results also demonstrate that FTL_0325 of F. tularensis impacts proIL-1ß expression as early as 2 h post-infection and delays activation of AIM2 and NLRP3-inflammasomes in a TLR2-dependent fashion. An enhanced activation of caspase-1 and IL-1ß observed in FTL_0325 mutant-infected macrophages at 24 h post-infection was independent of both AIM2 and NLRP3. Furthermore, F. tularensis LVS delayed pyroptotic cell death of the infected macrophages in an FTL_0325-dependent manner during the early stages of infection. In vivo studies in mice revealed that suppression of IL-1ß by FTL_0325 early during infection facilitates the establishment of a fulminate infection by F. tularensis. Collectively, this study provides evidence that F. tularensis LVS represses inflammasome activation and that F. tularensis-encoded FTL_0325 mediates this effect.


Asunto(s)
Francisella tularensis/inmunología , Inflamasomas/metabolismo , Tularemia/inmunología , Tularemia/microbiología , Animales , Proteínas Portadoras/metabolismo , Muerte Celular , Proteínas de Unión al ADN , Humanos , Interferón beta/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas Nucleares/metabolismo , Transducción de Señal/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
7.
J Biol Chem ; 287(30): 25216-29, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22654100

RESUMEN

Francisella tularensis, the causative agent of tularemia, is one of the deadliest agents of biological warfare and bioterrorism. Extremely high virulence of this bacterium is associated with its ability to dampen or subvert host innate immune response. The objectives of this study were to identify factors and understand the mechanisms of host innate immune evasion by F. tularensis. We identified and explored the pathogenic role of a mutant interrupted at gene locus FTL_0325, which encodes an OmpA-like protein. Our results establish a pathogenic role of FTL_0325 and its ortholog FTT0831c in the virulent F. tularensis SchuS4 strain in intramacrophage survival and suppression of proinflammatory cytokine responses. This study provides mechanistic evidence that the suppressive effects on innate immune responses are due specifically to these proteins and that FTL_0325 and FTT0831c mediate immune subversion by interfering with NF-κB signaling. Furthermore, FTT0831c inhibits NF-κB activity primarily by preventing the nuclear translocation of p65 subunit. Collectively, this study reports a novel F. tularensis factor that is required for innate immune subversion caused by this deadly bacterium.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Francisella tularensis/inmunología , Francisella tularensis/patogenicidad , Inmunidad Innata , Macrófagos/inmunología , Tularemia/inmunología , Factores de Virulencia/inmunología , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Línea Celular , Francisella tularensis/genética , Sitios Genéticos/inmunología , Humanos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Transducción de Señal/genética , Transducción de Señal/inmunología , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/inmunología , Tularemia/genética , Factores de Virulencia/genética
8.
Am J Physiol Renal Physiol ; 301(4): F802-12, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21775481

RESUMEN

Sepsis and its complications are associated with poor clinical outcomes. The circulatory system is a well-known target of lipopolysaccharide (LPS). Recently, several clinical studies documented mobilization of endothelial progenitor cells (EPCs) during endotoxemia, with the probability of patients' survival correlating with the rise in circulating EPCs. This fact combined with endotoxemia-induced vascular injury led us to hypothesize that the developing functional EPC incompetence could impede vascular repair and that adoptive transfer of EPCs could improve hemodynamics in endotoxemia. We used LPS injection to model endotoxemia. EPCs isolated from endotoxemic mice exhibited impaired clonogenic potential and LPS exerted Toll-like receptor 4-mediated cytotoxic effects toward EPCs, which was mitigated by embedding them in hyaluronic acid (HA) hydrogels. Therefore, intact EPCs were either delivered intravenously or embedded within pronectin-coated HA hydrogels. Adoptive transfer of EPCs in LPS-injected mice improved control of blood pressure and reduced hepatocellular and renal dysfunction. Specifically, EPC treatment was associated with the restoration of renal microcirculation and improved renal function. EPC therapy was most efficient when cells were delivered embedded in HA hydrogel. These findings establish major therapeutic benefits of adoptive transfer of EPCs, especially when embedded in HA hydrogels, in mice with LPS-induced endotoxemia, and they argue that hemodynamic and renal abnormalities of endotoxemia are in significant part due to developing incompetence of endogenous EPCs.


Asunto(s)
Células Endoteliales/trasplante , Endotoxemia/terapia , Hidrogeles/administración & dosificación , Riñón/irrigación sanguínea , Trasplante de Células Madre , Animales , Presión Sanguínea/efectos de los fármacos , Lipopolisacáridos/inmunología , Masculino , Ratones , Microcirculación , Neovascularización Fisiológica , Adhesión del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA