Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746089

RESUMEN

We have identified a NMIIA and IIB-specific small molecule inhibitor, MT-125, and have studied its effects in GBM. MT-125 has high brain penetrance and retention and an excellent safety profile; blocks GBM invasion and cytokinesis, consistent with the known roles of NMII; and prolongs survival as a single agent in murine GBM models. MT-125 increases signaling along both the PDGFR- and MAPK-driven pathways through a mechanism that involves the upregulation of reactive oxygen species, and it synergizes with FDA-approved PDGFR and mTOR inhibitors in vitro . Combining MT-125 with sunitinib, a PDGFR inhibitor, or paxalisib, a combined PI3 Kinase/mTOR inhibitor significantly improves survival in orthotopic GBM models over either drug alone, and in the case of sunitinib, markedly prolongs survival in ∼40% of mice. Our results provide a powerful rationale for developing NMII targeting strategies to treat cancer and demonstrate that MT-125 has strong clinical potential for the treatment of GBM. Highlights: MT-125 is a highly specific small molecule inhibitor of non-muscle myosin IIA and IIB, is well-tolerated, and achieves therapeutic concentrations in the brain with systemic dosing.Treating preclinical models of glioblastoma with MT-125 produces durable improvements in survival.MT-125 stimulates PDGFR- and MAPK-driven signaling in glioblastoma and increases dependency on these pathways.Combining MT-125 with an FDA-approved PDGFR inhibitor in a mouse GBM model synergizes to improve median survival over either drug alone, and produces tumor free, prolonged survival in over 40% of mice.

2.
ACS Chem Biol ; 16(11): 2164-2173, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34558887

RESUMEN

Myosin IIs, actin-based motors that utilize the chemical energy of adenosine 5'-triphosphate (ATP) to generate force, have potential as therapeutic targets. Their heavy chains differentiate the family into muscle (skeletal [SkMII], cardiac, smooth) and nonmuscle myosin IIs. Despite the therapeutic potential for muscle disorders, SkMII-specific inhibitors have not been reported and characterized. Here, we present the discovery, synthesis, and characterization of "skeletostatins," novel derivatives of the pan-myosin II inhibitor blebbistatin, with selectivity 40- to 170-fold for SkMII over all other myosin II family members. In addition, the skeletostatins bear improved potency, solubility, and photostability, without cytotoxicity. Based on its optimal in vitro profile, MT-134's in vivo tolerability, efficacy, and pharmacokinetics were determined. MT-134 was well-tolerated in mice, impaired motor performance, and had excellent exposure in muscles. Skeletostatins are useful probes for basic research and a strong starting point for drug development.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/química , Miosina Tipo II/antagonistas & inhibidores , Animales , Ratones , Estructura Molecular , Músculo Esquelético/metabolismo , Miosina Tipo II/metabolismo , Miosina Tipo II/toxicidad
3.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360869

RESUMEN

The scaffold protein Tks4 is a member of the p47phox-related organizer superfamily. It plays a key role in cell motility by being essential for the formation of podosomes and invadopodia. In addition, Tks4 is involved in the epidermal growth factor (EGF) signaling pathway, in which EGF induces the translocation of Tks4 from the cytoplasm to the plasma membrane. The evolutionarily-related protein p47phox and Tks4 share many similarities in their N-terminal region: a phosphoinositide-binding PX domain is followed by two SH3 domains (so called "tandem SH3") and a proline-rich region (PRR). In p47phox, the PRR is followed by a relatively short, disordered C-terminal tail region containing multiple phosphorylation sites. These play a key role in the regulation of the protein. In Tks4, the PRR is followed by a third and a fourth SH3 domain connected by a long (~420 residues) unstructured region. In p47phox, the tandem SH3 domain binds the PRR while the first SH3 domain interacts with the PX domain, thereby preventing its binding to the membrane. Based on the conserved structural features of p47phox and Tks4 and the fact that an intramolecular interaction between the third SH3 and the PX domains of Tks4 has already been reported, we hypothesized that Tks4 is similarly regulated by autoinhibition. In this study, we showed, via fluorescence-based titrations, MST, ITC, and SAXS measurements, that the tandem SH3 domain of Tks4 binds the PRR and that the PX domain interacts with the third SH3 domain. We also investigated a phosphomimicking Thr-to-Glu point mutation in the PRR as a possible regulator of intramolecular interactions. Phosphatidylinositol-3-phosphate (PtdIns(3)P) was identified as the main binding partner of the PX domain via lipid-binding assays. In truncated Tks4 fragments, the presence of the tandem SH3, together with the PRR, reduced PtdIns(3)P binding, while the presence of the third SH3 domain led to complete inhibition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Dominios Proteicos Ricos en Prolina , Unión Proteica , Dominios Homologos src
4.
Cells ; 10(1)2021 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467043

RESUMEN

SH3 domains constitute an important class of protein modules involved in a variety of cellular functions. They participate in protein-protein interactions via their canonical ligand binding interfaces composed of several evolutionarily conserved aromatic residues forming binding grooves for typical (PxxP) and atypical (PxxxPR, RxxK, RKxxY) binding motifs. The calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein 1, or Caskin1, a multidomain scaffold protein regulating the cortical actin filaments, is enriched in neural synapses in mammals. Based on its known interaction partners and knock-out animal studies, Caskin1 may play various roles in neural function and it is thought to participate in several pathological processes of the brain. Caskin1 has a single, atypical SH3 domain in which key aromatic residues are missing from the canonical binding groove. No protein interacting partner for this SH3 domain has been identified yet. Nevertheless, we have recently demonstrated the specific binding of this SH3 domain to the signaling lipid mediator lysophospatidic acid (LPA) in vitro. Here we report the solution NMR structure of the human Caskin1 SH3 domain and analyze its structural features in comparison with other SH3 domains exemplifying different strategies in target selectivity. The key differences revealed by our structural study show that the canonical binding groove found in typical SH3 domains accommodating proline-rich motifs is missing in Caskin1 SH3, most likely excluding a bona fide protein target for the domain. The LPA binding site is distinct from the altered protein binding groove. We conclude that the SH3 domain of Caskin1 might mediate the association of Caskin1 with membrane surfaces with locally elevated LPA content.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Lípidos/química , Proteínas del Tejido Nervioso/química , Péptidos/química , Secuencias de Aminoácidos , Humanos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Relación Estructura-Actividad , Dominios Homologos src
5.
J Vis Exp ; (150)2019 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-31475972

RESUMEN

ATPase enzymes utilize the free energy stored in adenosine triphosphate to catalyze a wide variety of endergonic biochemical processes in vivo that would not occur spontaneously. These proteins are crucial for essentially all aspects of cellular life, including metabolism, cell division, responses to environmental changes and movement. The protocol presented here describes a nicotinamide adenine dinucleotide (NADH)-coupled ATPase assay that has been adapted to semi-high throughput screening of small molecule ATPase inhibitors. The assay has been applied to cardiac and skeletal muscle myosin II's, two actin-based molecular motor ATPases, as a proof of principle. The hydrolysis of ATP is coupled to the oxidation of NADH by enzymatic reactions in the assay. First, the ADP generated by the ATPase is regenerated to ATP by pyruvate kinase (PK). PK catalyzes the transition of phosphoenolpyruvate (PEP) to pyruvate in parallel. Subsequently, pyruvate is reduced to lactate by lactate dehydrogenase (LDH), which catalyzes the oxidation of NADH in parallel. Thus, the decrease in ATP concentration is directly correlated to the decrease in NADH concentration, which is followed by change to the intrinsic fluorescence of NADH. As long as PEP is available in the reaction system, the ADP concentration remains very low, avoiding inhibition of the ATPase enzyme by its own product. Moreover, the ATP concentration remains nearly constant, yielding linear time courses. The fluorescence is monitored continuously, which allows for easy estimation of the quality of data and helps to filter out potential artifacts (e.g., arising from compound precipitation or thermal changes).


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , NAD/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Hidrólisis , Ácido Láctico/análisis , Ácido Láctico/metabolismo , Miosina Tipo II/antagonistas & inhibidores , Miosina Tipo II/metabolismo , NAD/análisis , Oxidación-Reducción , Ácido Pirúvico/análisis , Ácido Pirúvico/metabolismo
6.
J Biol Chem ; 294(12): 4608-4620, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30659095

RESUMEN

Src homology 3 (SH3) domains bind proline-rich linear motifs in eukaryotes. By mediating inter- and intramolecular interactions, they regulate the functions of many proteins involved in a wide variety of signal transduction pathways. Phosphorylation at different tyrosine residues in SH3 domains has been reported previously. In several cases, the functional consequences have also been investigated. However, a full understanding of the effects of tyrosine phosphorylation on the ligand interactions and cellular functions of SH3 domains requires detailed structural, atomic-resolution studies along with biochemical and biophysical analyses. Here, we present the first crystal structures of tyrosine-phosphorylated human SH3 domains derived from the Abelson-family kinases ABL1 and ABL2 at 1.6 and 1.4 Å resolutions, respectively. The structures revealed that simultaneous phosphorylation of Tyr89 and Tyr134 in ABL1 or the homologous residues Tyr116 and Tyr161 in ABL2 induces only minor structural perturbations. Instead, the phosphate groups sterically blocked the ligand-binding grooves, thereby strongly inhibiting the interaction with proline-rich peptide ligands. Although some crystal contact surfaces involving phosphotyrosines suggested the possibility of tyrosine phosphorylation-induced dimerization, we excluded this possibility by using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and NMR relaxation analyses. Extensive analysis of relevant databases and literature revealed not only that the residues phosphorylated in our model systems are well-conserved in other human SH3 domains, but that the corresponding tyrosines are known phosphorylation sites in vivo in many cases. We conclude that tyrosine phosphorylation might be a mechanism involved in the regulation of the human SH3 interactome.


Asunto(s)
Tirosina/metabolismo , Dominios Homologos src , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Humanos , Ligandos , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/química , Proteínas Proto-Oncogénicas c-abl/metabolismo , Dispersión del Ángulo Pequeño
7.
Sci Rep ; 6: 34280, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27711054

RESUMEN

The commitment steps of mesenchymal stromal cells (MSCs) to adipogenic and other lineages have been widely studied but not fully understood. Therefore, it is critical to understand which molecules contribute to the conversion of stem cells into differentiated cells. The scaffold protein Tks4 plays a role in podosome formation, EGFR signaling and ROS production. Dysfunction of Tks4 causes a hereditary disease called Frank-ter Haar syndrome with a variety of defects concerning certain mesenchymal tissues (bone, fat and cartilage) throughout embryogenic and postnatal development. In this study, we aimed to analyze how the mutation of Tks4 affects the differentiation potential of multipotent bone marrow MSCs (BM-MSCs). We generated a Tks4 knock-out mouse strain on C57Bl/6 background, and characterized BM-MSCs isolated from wild type and Tks4-/- mice to evaluate their differentiation. Tks4-/- BM-MSCs had reduced ability to differentiate into osteogenic and adipogenic lineages compared to wild type. Studying the expression profile of a panel of lipid-regulated genes during adipogenic induction revealed that the expression of adipogenic transcription factors, genes responsible for lipid droplet formation, sterol and fatty acid metabolism was delayed or reduced in Tks4-/- BM-MSCs. Taken together, these results establish a novel function for Tks4 in the regulation of MSC differentiation.


Asunto(s)
Adipogénesis , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Fosfoproteínas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Ratones , Ratones Noqueados , Osteocondrodisplasias/congénito , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Fosfoproteínas/genética
8.
Biochemistry ; 53(45): 7107-22, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25312846

RESUMEN

LC8 dynein light chains (DYNLL) are conserved homodimeric eukaryotic hub proteins that participate in diverse cellular processes. Among the binding partners of DYNLL2, myosin 5a (myo5a) is a motor protein involved in cargo transport. Here we provide a profound characterization of the DYNLL2 binding motif of myo5a in free and DYNLL2-bound form by using nuclear magnetic resonance spectroscopy, X-ray crystallography, and molecular dynamics simulations. In the free form, the DYNLL2 binding region, located in an intrinsically disordered domain of the myo5a tail, has a nascent helical character. The motif becomes structured and folds into a ß-strand upon binding to DYNLL2. Despite differences of the myo5a sequence from the consensus binding motif, one peptide is accommodated in each of the parallel DYNLL2 binding grooves, as for all other known partners. Interestingly, while the core motif shows a similar interaction pattern in the binding groove as seen in other complexes, the flanking residues make several additional contacts, thereby lengthening the binding motif. The N-terminal extension folds back and partially blocks the free edge of the ß-sheet formed by the binding motif itself. The C-terminal extension contacts the dimer interface and interacts with symmetry-related residues of the second myo5a peptide. The involvement of flanking residues of the core binding site of myo5a could modify the quaternary structure of the full-length myo5a and affect its biological functions. Our results deepen the knowledge of the diverse partner recognition of DYNLL proteins and provide an example of a Janus-faced linear motif.


Asunto(s)
Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Miosinas/química , Miosinas/metabolismo , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dineínas Citoplasmáticas/genética , Humanos , Datos de Secuencia Molecular , Miosinas/genética , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
9.
Proc Natl Acad Sci U S A ; 109(16): 6048-53, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22460785

RESUMEN

S100A4 is a member of the S100 family of calcium-binding proteins that is directly involved in tumor metastasis. It binds to the nonmuscle myosin IIA (NMIIA) tail near the assembly competence domain (ACD) promoting filament disassembly, which could be associated with increasing metastatic potential of tumor cells. Here, we investigate the mechanism of S100A4-NMIIA interaction based on binding studies and the crystal structure of S100A4 in complex with a 45-residue-long myosin heavy chain fragment. Interestingly, we also find that S100A4 binds as strongly to a homologous heavy chain fragment of nonmuscle myosin IIC as to NMIIA. The structure of the S100A4-NMIIA complex reveals a unique mode of interaction in the S100 family: A single, predominantly α-helical myosin chain is wrapped around the Ca(2+)-bound S100A4 dimer occupying both hydrophobic binding pockets. Thermal denaturation experiments of coiled-coil forming NMIIA fragments indicate that the coiled-coil partially unwinds upon S100A4 binding. Based on these results, we propose a model for NMIIA filament disassembly: Part of the random coil tailpiece and the C-terminal residues of the coiled-coil are wrapped around an S100A4 dimer disrupting the ACD and resulting in filament dissociation. The description of the complex will facilitate the design of specific drugs that interfere with the S100A4-NMIIA interaction.


Asunto(s)
Miosina Tipo IIA no Muscular/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas S100/química , Sitios de Unión , Calorimetría , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutación , Miosina Tipo IIA no Muscular/metabolismo , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteína de Unión al Calcio S100A4 , Proteínas S100/genética , Proteínas S100/metabolismo
10.
FEBS J ; 278(17): 2980-96, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21777386

RESUMEN

The LC8 family members of dynein light chains (DYNLL1 and DYNLL2 in vertebrates) are highly conserved ubiquitous eukaryotic homodimer proteins that interact, besides dynein and myosin 5a motor proteins, with a large (and still incomplete) number of proteins involved in diverse biological functions. Despite an earlier suggestion that LC8 light chains function as cargo adapters of the above molecular motors, they are now recognized as regulatory hub proteins that interact with short linear motifs located in intrinsically disordered protein segments. The most prominent LC8 function is to promote dimerization of their binding partners that are often scaffold proteins of various complexes, including the intermediate chains of the dynein motor complex. Structural and functional aspects of this intriguing hub protein will be highlighted in this minireview.


Asunto(s)
Dineínas Citoplasmáticas/fisiología , Citoesqueleto/metabolismo , Subunidades de Proteína/fisiología , Animales , Transporte Biológico , Dineínas Citoplasmáticas/química , Dineínas/metabolismo , Humanos , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/química
11.
J Biol Chem ; 285(49): 38649-57, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20889982

RESUMEN

LC8 dynein light chain (DYNLL) is a highly conserved eukaryotic hub protein with dozens of binding partners and various functions beyond being a subunit of dynein and myosin Va motor proteins. Here, we compared the kinetic and thermodynamic parameters of binding of both mammalian isoforms, DYNLL1 and DYNLL2, to two putative consensus binding motifs (KXTQTX and XG(I/V)QVD) and report only subtle differences. Peptides containing either of the above motifs bind to DYNLL2 with micromolar affinity, whereas a myosin Va peptide (lacking the conserved Gln) and the noncanonical Pak1 peptide bind with K(d) values of 9 and 40 µM, respectively. Binding of the KXTQTX motif is enthalpy-driven, although that of all other peptides is both enthalpy- and entropy-driven. Moreover, the KXTQTX motif shows strikingly slower off-rate constant than the other motifs. As most DYNLL partners are homodimeric, we also assessed the binding of bivalent ligands to DYNLL2. Compared with monovalent ligands, a significant avidity effect was found as follows: K(d) values of 37 and 3.5 nM for a dimeric myosin Va fragment and a Leu zipper dimerized KXTQTX motif, respectively. Ligand binding kinetics of DYNLL can best be described by a conformational selection model consisting of a slow isomerization and a rapid binding step. We also studied the binding of the phosphomimetic S88E mutant of DYNLL2 to the dimeric myosin Va fragment, and we found a significantly lower apparent K(d) value (3 µM). We conclude that the thermodynamic and kinetic fine-tuning of binding of various ligands to DYNLL could have physiological relevance in its interaction network.


Asunto(s)
Dineínas Citoplasmáticas/química , Cadenas Pesadas de Miosina/química , Miosina Tipo V/química , Péptidos/química , Secuencias de Aminoácidos , Animales , Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Ligandos , Mutación , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína
12.
Biochemistry ; 45(41): 12582-95, 2006 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-17029413

RESUMEN

A 10 kDa dynein light chain (DLC), previously identified as a tail light chain of myosin Va, may function as a cargo-binding and/or regulatory subunit of both myosin and dynein. Here, we identify and characterize the binding site of DLC on myosin Va. Fragments of the human myosin Va tail and the DLC2 isoform were expressed, and their complex formation was analyzed by pull-down assays, gel filtration, and spectroscopic methods. DLC2 was found to bind as a homodimer to a approximately 15 residue segment (Ile1280-Ile1294) localized between the medial and distal coiled-coil domains of the tail. The binding region contains the three residues coded by the alternatively spliced exon B (Asp1284-Lys1286). Removal of exon B eliminates DLC2 binding. Co-localization experiments in a transfected mammalian cell line confirm our finding that exon B is essential for DLC2 binding. Using circular dichroism, we demonstrate that binding of DLC2 to a approximately 85 residue disordered domain (Pro1235-Arg1320) induces some helical structure and stabilizes both flanking coiled-coil domains (melting temperature increases by approximately 7 degrees C). This result shows that DLC2 promotes the assembly of the coiled-coil domains of myosin Va. Nuclear magnetic resonance spectroscopy and docking simulations show that a 15 residue peptide (Ile1280-Ile1294) binds to the surface grooves on DLC2 similarly to other known binding partners of DLCs. When our data are taken together, they suggest that exon B and its associated DLC2 have a significant effect on the structure of parts of the coiled-coil tail domains and such a way could influence the regulation and cargo-binding function of myosin Va.


Asunto(s)
Empalme Alternativo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas Portadoras/química , Dicroismo Circular , Proteínas de Drosophila/química , Dineínas , Exones , Humanos , Técnicas In Vitro , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Cadenas Pesadas de Miosina/química , Miosina Tipo V/química , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA