Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microorganisms ; 8(9)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957569

RESUMEN

Viruses are widely distributed in various ecosystems and have important impacts on microbial evolution, community structure and function and nutrient cycling in the environment. Viral abundance, diversity and distribution are important for a better understanding of ecosystem functioning and have often been investigated in marine, soil, and other environments. Though microbes have proven useful in oil recovery under extreme conditions, little is known about virus community dynamics in such systems. In this study, injection water and production fluids were sampled in two blocks of the Daqing oilfield limited company where water flooding and microbial flooding were continuously used to improve oil recovery. Virus-like particles (VLPs) and bacteria in these samples were extracted and enumerated with epifluorescence microscopy, and viromes of these samples were also sequenced with Illumina Hiseq PE150. The results showed that a large number of viruses existed in the oil reservoir, and VLPs abundance of production wells was 3.9 ± 0.7 × 108 mL-1 and virus to bacteria ratio (VBR) was 6.6 ± 1.1 during water flooding. Compared with water flooding, the production wells of microbial flooding had relative lower VLPs abundance (3.3 ± 0.3 × 108 mL-1) but higher VBR (7.9 ± 2.2). Assembled viral contigs were mapped to an in-house virus reference data separate from the GenBank non-redundant nucleotide (NT) database, and the sequences annotated as virus accounted for 35.34 and 55.04% of total sequences in samples of water flooding and microbial flooding, respectively. In water flooding, 7 and 6 viral families were identified in the injection and production wells, respectively. In microbial flooding, 6 viral families were identified in the injection and production wells. The total number of identified viral species in the injection well was higher than that in the production wells for both water flooding and microbial flooding. The Shannon diversity index was higher in the production well of water flooding than in the production well of microbial flooding. These results show that viruses are very abundant and diverse in the oil reservoir's ecosystem, and future efforts are needed to reveal the potential function of viral communities in this extreme environment.

2.
Nanomaterials (Basel) ; 10(2)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085453

RESUMEN

Understanding the dispersivity and migration of cellulose nanocrystals (CNCs) in porous media is important for exploring their potential for soil and water remediation. In this study, a series of saturated column experiments were conducted to investigate the coupled effects of ionic strength, iron oxides (hematite), and soil colloids on the transport of CNCs through quartz sand and natural soils (red earth and brown earth). Results showed that CNCs had high mobility in oxide-free sand and that iron oxide coating reduced the mobility of CNCs. An analysis of Derjaguin-Landau-Verwey-Overbeek interactions indicated that CNCs exhibited a deep primary minimum, nonexistent maximum repulsion and secondary minimum on hematite-coated sand, favorable for the attachment of CNCs. The maximum effluent percentage of CNCs was 96% in natural soils at 5 mM, but this value decreased to 4% at 50 mM. Soil colloids facilitated the transport of CNCs in brown earth with larger effect at higher ionic strength. The ionic strength effect was larger in natural soils than sand and in red earth than brown earth. The study showed that CNCs can travel 0.2 m to 72 m in porous media, depending on soil properties, solution chemistry, and soil colloids.

3.
Chemosphere ; 220: 391-402, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30597359

RESUMEN

In subsurface bioremediation, electron donor addition promotes microbial Fe(III)-oxide mineral reduction that could change soil pore structure, release colloids, and alter soil surface properties. These processes in turn may impact bioremediation rates and the ultimate fate of contaminants. Columns packed with water-stable, Fe-oxide-rich soil aggregates were infused with acetate-containing artificial groundwater and operated for 20 d or 60 d inside an anoxic chamber. Soluble Fe(II) and soil colloids were detected in the effluent within one week after initiation of the acetate addition, demonstrating Fe(III)-bioreduction and colloid formation. Diffusible Br-, less diffusible 2,6-difluorobenzoate (DFBA), and non-diffusible silica-shelled silver nanoparticles (SSSNP) were used as tracers in transport experiments before and after the bioreduction. The transport of Br- was not influenced by the bioreduction. DFBA showed earlier breakthrough and less tailing after the bioreduction, suggesting alterations in flow paths and soil surface chemistry during the 20-d bioreduction treatment. Similarly, the bioreduction increased the transport of SSSNP very significantly, with mass recovery increasing from 1.7% to 25.1%. Unexpectedly, the SSSNP was completely retained in the columns when the acetate injection was extended from 20 to 60 d, while the mass recovery of DFBA decreased from 89.1% to 84.1% and Br- showed no change. The large change in the transport of SSSNP was attributed to soil aggregate breakdown and colloid release (causing mechanical straining of SSSNP) and the exposure of iron oxide surfaces previously unavailable within aggregate interiors (facilitating attachment of SSSNP). These results suggest a time-dependent fashion of microbial effect on the transport of diffusivity-varying tracers.


Asunto(s)
Bacterias/metabolismo , Benzoatos/metabolismo , Biodegradación Ambiental , Compuestos Férricos/química , Nanopartículas del Metal/análisis , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Coloides/metabolismo , Agua Subterránea/química , Nanopartículas del Metal/química , Oxidación-Reducción , Dióxido de Silicio/química , Plata/química , Suelo/química
4.
J Environ Sci Health B ; 41(6): 923-35, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16893780

RESUMEN

Agricultural pharmaceuticals are a major environmental concern because of their hazardous effects on human and wildlife. This study analyzed phospholipid ester-linked fatty acids (PLFAs) and quinones to investigate the effects of a steroid (17beta-estradiol) and agricultural antibiotics (chlortetracycline and tylosin) on soil microbes in the laboratory. Two different types of soil were used: Sequatchie loam (0.8% organic matter) and LaDelle silt loam (9.2% organic matter). The soils were spiked with 17beta-estradiol and antibiotics, alone or in combination. In Sequatchie loam, 17beta-estradiol significantly increased the microbial biomass, especially the biomarkers for beta proteobacteria (16:1omega7c, 18:1omega7c, Cy17:0, and UQ-8). The coexistence of antibiotics decreased the stimulatory effect of 17beta-estradiol on the microbial community. In LaDelle silt loam, there were no significant differences in total microbial biomass and their microbial community structure among the treatments. Overall, 17beta-estradiol changed the microbial community of soil and the presence of antibiotics nullified the effect of 17beta-estradiol. However, the effects of 17beta-estradiol and antibiotics on soil microbes were sensitive to the soil properties, as seen in the LaDelle silt loam.


Asunto(s)
Antibacterianos/farmacología , Bacterias , Biodegradación Ambiental/efectos de los fármacos , Estradiol/farmacología , Microbiología del Suelo , Contaminantes del Suelo/farmacología , Agricultura , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Clortetraciclina/farmacología , Suelo , Tilosina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA