Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Proteomics ; 21(1): 21, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475692

RESUMEN

Despite progress, MS-based proteomics in biofluids, especially blood, faces challenges such as dynamic range and throughput limitations in biomarker and disease studies. In this work, we used cutting-edge proteomics technologies to construct label-based and label-free workflows, capable of quantifying approximately 2,000 proteins in biofluids. With 70µL of blood and a single depletion strategy, we conducted an analysis of a homogenous cohort (n = 32), comparing medium-grade prostate cancer patients (Gleason score: 7(3 + 4); TNM stage: T2cN0M0, stage IIB) to healthy donors. The results revealed dozens of differentially expressed proteins in both plasma and serum. We identified the upregulation of Prostate Specific Antigen (PSA), a well-known biomarker for prostate cancer, in the serum of cancer cohort. Further bioinformatics analysis highlighted noteworthy proteins which appear to be differentially secreted into the bloodstream, making them good candidates for further exploration.

2.
Front Oncol ; 10: 582827, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585200

RESUMEN

Sulfation of heparan sulfate proteoglycans (HSPG) regulates signaling of growth factor receptors via specific interactions with the sulfate groups. 6-O-Sulfation of HSPG is an impactful modification regulated by the activities of dedicated extracellular endosulfatases. Specifically, extracellular sulfatase Sulf-2 (SULF2) removes 6-O-sulfate from HS chains, modulates affinity of carrier HSPG to their ligands, and thereby influences activity of the downstream signaling pathway. In this study, we explored the effect of SULF2 expression on HSPG sulfation and its relationship to clinical outcomes of patients with head and neck squamous cell carcinoma (HNSCC). We found a significant overexpression of SULF2 in HNSCC tumor tissues which differs by tumor location and etiology. Expression of SULF2 mRNA in tumors associated with human papillomavirus (HPV) infection was two-fold lower than in tumors associated with a history of tobacco and alcohol consumption. High SULF2 mRNA expression is significantly correlated with poor progression-free interval and overall survival of patients (n = 499). Among all HS-related enzymes, SULF2 expression had the highest hazard ratio in overall survival after adjusting for clinical characteristics. SULF2 protein expression (n = 124), determined by immunohistochemical analysis, showed a similar trend. The content of 6-O-sulfated HSPG, measured by staining with the HS3A8 antibody, was higher in adjacent mucosa compared to tumor tissue but revealed no difference based on SULF2 staining. LC-MS/MS analysis showed low abundance of N-sulfation and O-sulfation in HS but no significant difference between SULF2-positive and SULF2-negative tumors. Levels of enzymes modifying 6-O-sulfation, measured by RT-qPCR in HNSCC tumor tissues, suggest that HSPG sulfation is carried out by the co-regulated activities of multiple genes. Imbalance of the HS modifying enzymes in HNSCC tumors modifies the overall sulfation pattern, but the alteration of 6-O-sulfate is likely non-uniform and occurs in specific domains of the HS chains. These findings demonstrate that SULF2 expression correlates with survival of HNSCC patients and could potentially serve as a prognostic factor or target of therapeutic interventions.

3.
Mol Cell Proteomics ; 17(9): 1778-1787, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29915149

RESUMEN

Parkinson's disease (PD) is a neurological disorder characterized by the progressive loss of functional dopaminergic neurons in the nigrostriatal pathway in the brain. Although current treatments provide only symptomatic relief, gene therapy has the potential to slow or halt the degeneration of nigrostriatal dopamine neurons in PD patients. Adeno-associated viruses (AAV) are vectors of choice in gene therapy because of their well-characterized safety and efficacy profiles; however, although gene therapy has been successful in preclinical models of the disease, clinical trials in humans have failed to demonstrate efficacy. Significantly, all primary AAV receptors of the virus are glycans. We thus hypothesize that age related changes in glycan receptors of heparan sulfate (HS) proteoglycans (receptor for rAAV2), and/or N-glycans with terminal galactose (receptor for rAAV9) results in poor adeno-associated virus binding in either the striatum or substantia nigra, or both, affecting transduction and gene delivery. To test our hypothesis we analyzed the striatum and substantia nigra for changes in HS, N-glycans and proteomic signatures in young versus aged rat brain striatum and substantia nigra. We observed different brain region-specific HS disaccharide profiles in aged compared with young adult rats for brain region-specific profiles in striatum versus substantia nigra. We observed brain region- and age-specific N-glycan compositional profiles with respect to the terminal galactose units that serve as receptors for AAV9. We also observed brain region-specific changes in protein expression in the aging nigrostriatal pathway. These studies provide insight into age- and brain region-specific changes in glycan receptors and proteome that will inform design of improved viral vectors for Parkinson Disease (PD) gene therapy.


Asunto(s)
Envejecimiento/metabolismo , Cuerpo Estriado/metabolismo , Glicómica , Proteoma/metabolismo , Proteómica , Sustancia Negra/metabolismo , Animales , Disacáridos/metabolismo , Galactosa/metabolismo , Heparitina Sulfato/metabolismo , Masculino , Especificidad de Órganos , Polisacáridos/metabolismo , Ratas Endogámicas F344
4.
Mol Diagn Ther ; 22(2): 203-218, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29411301

RESUMEN

Earlier identification of aggressive melanoma remains a goal in the field of melanoma research. With new targeted and immune therapies that have revolutionized the care of patients with melanoma, the ability to predict progression and monitor or predict response to therapy has become the new focus of research into biomarkers in melanoma. In this review, promising biomarkers are highlighted. These biomarkers have been used to diagnose melanoma as well as predict progression to advanced disease and response to therapy. The biomarkers take various forms, including protein expression at the level of tissue, genetic mutations of cancer cells, and detection of circulating DNA. First, a brief description is provided about the conventional tissue markers used to stage melanoma, including tumor depth. Next, protein biomarkers, which provide both diagnostic and prognostic information, are described. This is followed by a discussion of important genetic mutations, microRNA, and epigenetic modifications that can provide therapeutic and prognostic material. Finally, emerging serologic biomarkers are reviewed, including circulating melanoma cells and exosomes. Overall the goal is to identify biomarkers that aid in the earlier identification and improved treatment of aggressive melanoma.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Melanoma/metabolismo , Neoplasias Cutáneas/metabolismo , Biomarcadores de Tumor/sangre , Humanos , Melanoma/diagnóstico , Melanoma/genética , Melanoma/patología , Terapia Molecular Dirigida , Pronóstico , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Resultado del Tratamiento , Melanoma Cutáneo Maligno
5.
Mol Cancer Res ; 14(1): 103-13, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26507575

RESUMEN

UNLABELLED: Basal-like breast cancer (BLBC) is an aggressive subtype of breast cancer which is often enriched with cancer stem cells (CSC), but the underlying molecular basis for this connection remains elusive. We hypothesized that BLBC cells are able to establish a niche permissive to the maintenance of CSCs and found that tumor cell-derived periostin (POSTN), a component of the extracellular matrix, as well as a corresponding cognate receptor, integrin α(v)ß(3), are highly expressed in a subset of BLBC cell lines as well as in CSC-enriched populations. Furthermore, we demonstrated that an intact periostin-integrin ß3 signaling axis is required for the maintenance of breast CSCs. POSTN activates the ERK signaling pathway and regulates NF-κB-mediated transcription of key cytokines, namely IL6 and IL8, which in turn control downstream activation of STAT3. In summary, these findings suggest that BLBC cells have an innate ability to establish a microenvironmental niche supportive of CSCs. IMPLICATIONS: The findings reported here indicate that POSTN produced by CSCs acts to reinforce the stem cell state through the activation of integrin receptors and the production of key cytokines.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Moléculas de Adhesión Celular/metabolismo , Citocinas/metabolismo , Células Madre Neoplásicas/patología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Citocinas/genética , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Integrina alfaVbeta3 , Sistema de Señalización de MAP Quinasas , Ratones , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Pronóstico
6.
J Invest Dermatol ; 135(9): 2283-2291, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25910030

RESUMEN

Aberrant HGF-MET (hepatocyte growth factor-met proto-oncogene) signaling activation via interactions with surrounding stromal cells in tumor microenvironment has significant roles in malignant tumor progression. However, extracellular proteolytic regulation of HGF activation, which is influenced by the tumor microenvironment, and its consequential effects on melanoma malignancy remain uncharacterized. In this study, we identified SPINT2 (serine peptidase inhibitor Kunitz type 2), a proteolytic inhibitor of hepatocyte growth factor activator (HGFA), which has a significant role in the suppression of the HGF-MET pathway and malignant melanoma progression. SPINT2 expression is significantly lower in metastatic melanoma tissues compared with those in early-stage primary melanomas, which also corresponded with DNA methylation levels isolated from tissue samples. Treatment with the DNA-hypomethylating agent decitabine in cultured melanoma cells induced transcriptional reactivation of SPINT2, suggesting that this gene is epigenetically silenced in malignant melanomas. Furthermore, we show that ectopically expressed SPINT2 in melanoma cells inhibits the HGF-induced MET-AKT (v-Akt murine thymoma viral oncogene) signaling pathway and decreases malignant phenotype potential such as cell motility and invasive growth of melanoma cells. These results suggest that SPINT2 is associated with tumor-suppressive functions in melanoma by inhibiting an extracellular signal regulator of HGF, which is typically activated by tumor-stromal interactions. These findings indicate that epigenetic impairment of the tightly regulated cytokine-receptor communications in tumor microenvironment may contribute to malignant tumor progression.


Asunto(s)
Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Factor de Crecimiento de Hepatocito/metabolismo , Melanoma/genética , Glicoproteínas de Membrana/genética , Neoplasias Cutáneas/genética , Animales , Proliferación Celular/genética , Metilación de ADN , Epigénesis Genética , Silenciador del Gen , Factor de Crecimiento de Hepatocito/genética , Humanos , Immunoblotting , Melanoma/patología , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa/métodos , Regiones Promotoras Genéticas , Proto-Oncogenes Mas , Serina Endopeptidasas , Transducción de Señal/genética , Neoplasias Cutáneas/patología , Células Tumorales Cultivadas
7.
Part Part Syst Charact ; 30(4): 355-364, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23976822

RESUMEN

B-precursor acute lymphoblastic leukemia (B-ALL) lymphoblast (blast) internalization of anti-cytokine receptor-like factor 2 (CRLF2) antibody-armored biodegradable nanoparticles (AbBNPs) are investigated. First, AbBNPsaere synthesized by adsorbing anti-CRLF2 antibodies to poly(D,L-lactide- co -glycolide) (PLGA) nanoparticles of various sizes and antibody surface density (Ab/BNP) ratios. Second, AbBNPs are incubated with CRLF2-overexpressing (CRLF2+) or control blasts. Third, internalization of AbBNPs by blasts is evaluated by multicolor flow cytometry as a function of receptor expression, AbBNP size, and Ab/BNP ratio. Results from these experiments are con-firmed by electron microscopy, fluorescence microscopy, and Western blotting. The optimal size and Ab/BNP for internalization of AbBNPs by CRLF2+ blasts is 50 nm with 10 Ab/BNP and 100 nm with 25 Ab/BNP. These studies show that internalization of AbBNPs in childhood B-ALL blasts is AbBNP size-and Ab/BNP ratio-dependent. All AbBNP combinations are non-cytotoxic. It is also shown that CD47 is very slightly up-regulated by blasts exposed to AbBNPs. CD47 is "the marker of self" overexpressed by blasts to escape phagocytosis, or "cellular devouring", by beneficial macrophages. The results indicate that precise engineering of AbBNPs by size and Ab/BNP ratio may improve the internalization and selectivity of future biodegradable nanoparticles for the treatment of leukemia patients, including drug-resistant minority children and Down's syndrome patients with CRLF2+B-ALL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA