Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675628

RESUMEN

In this study, we present a comprehensive investigation of 2-amino-4,6-diphenylnicotinonitriles (APNs, 1-6), including their synthesis, cytotoxicity against breast cancer cell lines, and photophysical properties. Compound 3 demonstrates exceptional cytotoxicity, surpassing the potency of Doxorubicin. The fluorescence spectra of the synthesized 1-6 in different solvents reveal solvent-dependent shifts in the emission maximum values, highlighting the influence of the solvent environment on their fluorescence properties. A quantum chemical TD-DFT analysis provides insights into the electronic structure and fluorescence behavior of 1-6, elucidating HOMO-LUMO energy gaps, electronegativity values, and dipole moments, contributing to a deeper understanding of their electronic properties and potential reactivity. These findings provide valuable knowledge for the development of APNs (1-6) as fluorescent sensors and potential anticancer agents.


Asunto(s)
Antineoplásicos , Nitrilos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Nitrilos/química , Nitrilos/síntesis química , Nitrilos/farmacología , Línea Celular Tumoral , Teoría Cuántica , Estructura Molecular , Espectrometría de Fluorescencia , Células MCF-7 , Supervivencia Celular/efectos de los fármacos
2.
Front Chem ; 12: 1351669, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449478

RESUMEN

This study investigates the potential of 2-(4-butylbenzyl)-3-hydroxynaphthalene-1,4-dione (11) and its 12 derivatives as anticancer and biofilm formation inhibitors for methicillin-resistant staphylococcus aureus using in silico methods. The study employed various computational methods, including molecular dynamics simulation molecular docking, density functional theory, and global chemical descriptors, to evaluate the interactions between the compounds and the target proteins. The docking results revealed that compounds 9, 11, 13, and ofloxacin exhibited binding affinities of -7.6, -7.9, -7.5, and -7.8 kcal mol-1, respectively, against peptide methionine sulfoxide reductase msrA/msrB (PDB: 3E0M). Ligand (11) showed better inhibition for methicillin-resistant staphylococcus aureus msrA/msrB enzyme. The complex of the 3E0M-ligand 11 remained highly stable across all tested temperatures (300, 305, 310, and 320 K). Principal Component Analysis (PCA) was employed to evaluate the behavior of the complex at various temperatures (300, 305, 310, and 320 K), demonstrating a total variance of 85%. Convergence was confirmed by the eigenvector's cosine content value of 0.43, consistently displaying low RMSD values, with the minimum observed at 310 K. Furthermore, ligand 11 emerges as the most promising candidate among the compounds examined, showcasing notable potential when considering a combination of in vitro, in vivo, and now in silico data. While the naphthoquinone derivative (11) remains the primary candidate based on comprehensive in silico studies, further analysis using Frontier molecular orbital (FMO) suggests while the Egap value of compound 11 (2.980 eV) and compound 13 (2.975 eV) is lower than ofloxacin (4.369 eV), indicating their potential, so it can be a statement that compound 13 can also be investigated in further research.

3.
MethodsX ; 12: 102537, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38299040

RESUMEN

In exploring nature's potential in addressing liver-related conditions, this study investigates the therapeutic capabilities of flavonoids. Utilizing in silico methodologies, we focus on flavone and its analogs (1-14) to assess their therapeutic potential in treating liver diseases. Molecular change calculations using density functional theory (DFT) were conducted on these compounds, accompanied by an evaluation of each analog's physiochemical and biochemical properties. The study further assesses these flavonoids' binding effectiveness and locations through molecular docking studies against six target proteins associated with human cancer. Tropoflavin and taxifolin served as reference drugs. The structurally modified flavone analogs (1-14) displayed a broad range of binding affinities, ranging from -7.0 to -9.4 kcal mol⁻¹, surpassing the reference drugs. Notably, flavonoid (7) exhibited significantly higher binding affinities with proteins Nrf2 (PDB:1 × 2 J) and DCK (PDB:1 × 2 J) (-9.4 and -8.1 kcal mol⁻¹) compared to tropoflavin (-9.3 and -8.0 kcal mol⁻¹) and taxifolin (-9.4 and -7.1 kcal mol⁻¹), respectively. Molecular dynamics (MD) simulations revealed that the docked complexes had a root mean square deviation (RMSD) value ranging from 0.05 to 0.2 nm and a root mean square fluctuation (RMSF) value between 0.35 and 1.3 nm during perturbation. The study concludes that 5,7-dihydroxyflavone (7) shows substantial promise as a potential therapeutic agent for liver-related conditions. However, further validation through in vitro and in vivo studies is necessary. Key insights from this study include:•Screening of flavanols and their derivatives to determine pharmacological and bioactive properties using ADMET, molinspiration, and pass prediction analysis.•Docking of shortlisted flavone derivatives with proteins having essential functions.•Analysis of the best protein-flavonoid docked complexes using molecular dynamics simulation to determine the flavonoid's efficiency and stability within a system.

4.
ACS Omega ; 8(29): 25817-25831, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37521603

RESUMEN

In this study, microwave-assisted Knoevenagel condensation was used to produce two novel series of derivatives (1-6) from benzylidenemalononitrile and ethyl 2-cyano-3-phenylacrylate. The synthesized compounds were characterized using Fourier transform infrared (FT-IR) and 1H NMR spectroscopies. The pharmacodynamics, toxicity profiles, and biological activities of the compounds were evaluated through an in silico study using prediction of activity spectra for substances (PASS) and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies. According to the PASS prediction results, compounds 1-6 showed greater antineoplastic potency for breast cancer than other types of cancer. Molecular docking was employed to investigate the binding mode and interaction sites of the derivatives (1-6) with three human cancer targets (HER2, EGFR, and human FPPS), and the protein-ligand interactions of these derivatives were compared to those reference standards Tyrphostin 1 (AG9) and Tyrphostin 23 (A23). Compound 3 showed a stronger effect on two cell lines (HER2 and FPPS) than the reference drugs. A 20 ns molecular dynamics (MD) simulation was also conducted to examine the ligand's behavior at the active binding site of the modeled protein, utilizing the lowest docking energy obtained from the molecular docking study. Enthalpies (ΔH), Gibbs free energies (ΔG), entropies (ΔS), and frontier molecular orbital parameters (highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap, hardness, and softness) were calculated to confirm the thermodynamic stability of all derivatives. The consistent results obtained from the in silico studies suggest that compound 3 has potential as a new anticancer and antiparasitic drug. Further research is required to validate its efficacy.

5.
J Immunol ; 193(1): 96-101, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24879795

RESUMEN

Enhanced iodide ingestion is known to accelerate the incidence and severity of spontaneous autoimmune thyroiditis [iodide-accelerated spontaneous autoimmune thyroiditis (ISAT)] in NOD.H2(h4) mice. CD4+ cells are required for the development and maintenance of ISAT, but their target epitopes remain unknown. In this study, we show that the previously identified thyroglobulin (Tg) T cell epitope p2549-2560 containing thyroxine at position 2553 (T4p2553) induces thyroiditis as well as strong specific T and B cell responses in NOD.H2(h4) mice. In ISAT, activated CD4+ T cells specific for T4p2553 are detected before the disease onset in thyroid-draining cervical lymph nodes only in mice placed on an iodide-rich diet and not in age-matched controls. In addition, selective enrichment of CD4+ IFN-γ+ T4p2553-specific cells is observed among cervical lymph node cells and intrathyroidal lymphocytes. T4p2553 was equally detectable on dendritic cells obtained ex vivo from cervical lymph node cells of NaI-fed or control mice, suggesting that the iodide-rich diet contributes to the activation of autoreactive cells rather than the generation of the autoantigenic epitope. Furthermore, spontaneous T4p2553-specific IgG are not detectable within the strong Tg-specific autoantibody response. To our knowledge, these data identify for the first time a Tg T cell epitope as a spontaneous target in ISAT.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Péptidos/inmunología , Yoduro de Sodio/toxicidad , Tiroglobulina/inmunología , Tiroiditis Autoinmune/inmunología , Animales , Autoanticuerpos/genética , Autoanticuerpos/inmunología , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos T CD4-Positivos/patología , Epítopos de Linfocito T/genética , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Ratones , Ratones Endogámicos NOD , Péptidos/genética , Tiroglobulina/genética , Tiroiditis Autoinmune/inducido químicamente , Tiroiditis Autoinmune/genética , Tiroiditis Autoinmune/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA