Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Diabetes Res ; 2022: 5636499, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35224107

RESUMEN

Our recent studies have shown that glucose-dependent insulinotropic polypeptide (GIP), but not glucagon-like peptide 1 (GLP-1), augments Na-glucose transporter 1- (SGLT1-) mediated glucose absorption in mouse jejunum. Na-dependent glucose absorption sharply rose and peaked in 3 months of high-fat (i.e., obese) compared to normal (i.e., normal weight) diet fed animals. Previous studies have shown that GIP-augmented SGLT1 and PEPT1 (peptide transporter 1) are regulated by protein kinase A (PKA) signaling in mouse jejunum. Additional studies have indicated that cAMP and PI3 kinase signaling augment PEPT1 through EPAC and AKT activation pathways, respectively, through increased apical PEPT1 trafficking in intestinal epithelial cells. However, little is known about how the signaling glucose transport paradigm is altered over a long period. Early on, increased glucose absorption occurs through SGLT1, but as the obesity and diabetes progress, there is a dramatic shift towards a Na-independent mechanism. Surprisingly, at the peak of glucose absorption during the fifth month of the progression of obesity, the SGLT1 activity was severely depressed, while a Na-independent glucose absorptive process begins to appear. Since glucose transporter 2 (GLUT2) is expressed on the apical membrane of the small intestine in obese patients and animal models of obesity, it was hypothesized to be the new more efficient route. Western blot analyses and biotinylation of the apical membrane revealed that the GIP expression increases in the obese animals and its trafficking to the apical membrane increases with the GIP treatment.


Asunto(s)
Polipéptido Inhibidor Gástrico/efectos de los fármacos , Transportador de Glucosa de Tipo 4/efectos de los fármacos , Yeyuno/metabolismo , Fragmentos de Péptidos/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Polipéptido Inhibidor Gástrico/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Yeyuno/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL/metabolismo , Ratones Obesos/metabolismo , Fragmentos de Péptidos/metabolismo
2.
Am J Physiol Cell Physiol ; 320(6): C1074-C1087, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33852365

RESUMEN

Voltage-gated Kv7 (KCNQ family) K+ channels are expressed in many neuronal populations and play an important role in regulating membrane potential by generating a hyperpolarizing K+ current and decreasing cell excitability. However, the role of KV7 channels in the neural regulation of intestinal epithelial Cl- secretion is not known. Cl- secretion in mouse distal colon was measured as a function of short-circuit current (ISC), and pharmacological approaches were used to test the hypothesis that activation of KV7 channels in enteric neurons would inhibit epithelial Cl- secretion. Flupirtine, a nonselective KV7 activator, inhibited basal Cl- secretion in mouse distal colon and abolished or attenuated the effects of drugs that target various components of enteric neurotransmission, including tetrodotoxin (NaV channel blocker), veratridine (NaV channel activator), nicotine (nicotinic acetylcholine receptor agonist), and hexamethonium (nicotinic antagonist). In contrast, flupritine did not block the response to epithelium-targeted agents VIP (endogenous VPAC receptor ligand) or carbachol (nonselective cholinergic agonist). Flupirtine inhibited Cl- secretion in both full-thickness and seromuscular-stripped distal colon (containing the submucosal, but not myenteric plexus) but generated no response in epithelial T84 cell monolayers. KV7.2 and KV7.3 channel proteins were detected by immunofluorescence in whole mount preparations of the submucosa from mouse distal colon. ICA 110381 (KV7.2/7.3 specific activator) inhibited Cl- secretion comparably to flupirtine. We conclude that KV7 channel activators inhibit neurally driven Cl- secretion in the colonic epithelium and may therefore have therapeutic benefit in treating pathologies associated with hyperexcitable enteric nervous system, such as irritable bowel syndrome with diarrhea (IBS-D).


Asunto(s)
Cloruros/metabolismo , Colon/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos , Células Epiteliales/metabolismo , Canales de Potasio KCNQ/metabolismo , Neuronas/metabolismo , Aminopiridinas/farmacología , Animales , Carbacol/farmacología , Línea Celular Tumoral , Agonistas Colinérgicos/farmacología , Colon/efectos de los fármacos , Sistema Nervioso Entérico/metabolismo , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos BALB C , Neuronas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
3.
Am J Physiol Cell Physiol ; 318(2): C263-C271, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31721611

RESUMEN

Iron deficiency anemia is a common complication of ulcerative colitis (UC) that can profoundly impact quality of life. Most iron absorption occurs in the duodenum via divalent metal transporter 1 (DMT1)-mediated uptake and ferroportin-1 (FPN1)-mediated export across the apical and basolateral membranes, respectively. However, the colon also contains iron transporters and can participate in iron absorption. Studies have shown increased duodenal DMT1 and FPN1 in patients with UC, but there is conflicting evidence about whether expression is altered in UC colon. We hypothesized that expression of colonic DMT1 and FPN1 will also increase to compensate for iron deficiency. Quantitative RT-PCR and Western blot analyses were performed on duodenal and colonic segmental (right colon, transverse colon, left colon, and rectum) biopsies obtained during colonoscopy. DMT1 mRNA and protein abundances in colonic segments were approximately equal to those in the duodenum, whereas colonic FPN1 mRNA and protein abundances of colonic segments were about one-quarter of those of the duodenum. DMT1 specific mRNA and protein abundances were increased twofold, whereas FPN1 mRNA and protein expressions were increased fivefold in UC distal colon. Immunofluorescence studies revealed enhanced expression of apical membrane- and basolateral membrane-localized DMT1 and FPN1 in UC human colon, respectively. Increased DMT1 expression was associated with enhanced 2-(3-carbamimidoylsulfanylmethyl-benzyl)-isothiourea (CISMBI, DMT1 specific inhibitor)-sensitive 59Fe uptake in UC human colon. We conclude from these results that patients with active UC have increased expression of colonic iron transporters and increased iron absorption, which may be targeted in the treatment of UC-related anemia.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Colitis Ulcerosa/metabolismo , Colon/metabolismo , Absorción Intestinal/fisiología , Hierro/metabolismo , Factores de Transcripción/metabolismo , Animales , Duodeno/metabolismo , Humanos , Transporte Iónico/fisiología , Calidad de Vida , ARN Mensajero/metabolismo
4.
Am J Physiol Gastrointest Liver Physiol ; 316(2): G229-G246, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30406698

RESUMEN

Whether zinc (Zn2+) regulates barrier functions by modulating tight-junction (TJ) proteins when pathogens such as Shigella alter epithelial permeability is still unresolved. We investigated the potential benefits of Zn2+ in restoring impaired barrier function in vivo in Shigella-infected mouse tissue and in vitro in T84 cell monolayers. Basolateral Shigella infection triggered a time-dependent decrease in transepithelial resistance followed by an increase in paracellular permeability of FITC-labeled dextran and altered ion selectivity. This led to ion and water loss into the intestinal lumen. Immunofluorescence studies revealed redistribution of claudin-2 and -4 to an intracellular location and accumulation of these proteins in the cytoplasm following infection. Zn2+ ameliorated this perturbed barrier by redistribution of claudin-2 and -4 back to the plasma membrane and by modulating the phosphorylation state of TJ proteins t hough extracellular signal-regulated kinase (ERK)1/2 dependency. Zn2+ prevents elevation of IL-6 and IL-8. Mice challenged with Shigella showed that oral Zn2+supplementation diminished diverse pathophysiological symptoms of shigellosis. Claudin-2 and -4 were susceptible to Shigella infection, resulting in altered barrier function and increased levels of IL-6 and IL-8. Zn2+ supplementation ameliorated this barrier dysfunction, and the inflammatory response involving ERK-mediated change of phosphorylation status for claudin-2 and -4. Thus, Zn2+ may have potential therapeutic value in inflammatory diarrhea and shigellosis. NEW & NOTEWORTHY Our study addresses whether Zn2+ could be an alternative strategy to reduce Shigella-induced inflammatory response and epithelial barrier dysfunction. We have defined a mechanism in terms of intracellular signaling pathways and tight-junction protein expression by Zn2+. Claudin-2 and -4 are susceptible to Shigella infection, whereas in the presence of Zn2+ they are resistant to infection-related barrier dysfunction involving ERK-mediated change of phosphorylation status of claudins.


Asunto(s)
Claudina-2/metabolismo , Claudina-4/metabolismo , Permeabilidad/efectos de los fármacos , Zinc/farmacología , Animales , Claudina-2/efectos de los fármacos , Claudina-4/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteína Quinasa 3 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Zinc/metabolismo
5.
Biomaterials ; 182: 312-322, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30153612

RESUMEN

Lineage specification is an essential process in stem cell fate, tissue homeostasis and development. Microenvironmental cues provide direct and selective extrinsic signals to regulate lineage specification of stem cells. Microenvironmental milieu consists of two essential components, one being extracellular matrix (ECM) as the substratum, while the other being cell secreted exosomes and growth factors. ECM of differentiated cells modulates phenotypic expression of stem cells, while their exosomes contain phenotype specific instructive factors (miRNA, RNA and proteins) that control stem cell differentiation. This study demonstrates that osteoblasts-derived (Os-Exo) and adipocytes-derived (Ad-Exo) exosomes contain instructive factors that regulate the lineage specification of human mesenchymal stem cells (hMSCs). Analyses of exosomes revealed the presence of transcription factors in the form of RNA and protein for osteoblasts (RUNX2 and OSX) and adipocytes (C/EBPα and PPARγ). In addition, several miRNAs reported to have osteogenic and adipogenic differentiation potentials are also identified in these exosomes. Kinetic and differentiation analyses indicate that both osteoblast and adipocyte exosomes augment ECM-mediated differentiation of hMSCs into the respective lineage. The combination of osteoblast/adipocyte ECM and exosomes turned-on the lineage specific gene expressions at earlier time points of differentiation compared to the respective ECM or exosomes administered individually. Interestingly, the hMSCs differentiated on osteoblast ECM with adipogenic exosomes showed expression of adipogenic lineage genes, while hMSCs differentiated on adipocyte ECM with osteoblast exosomes showed osteogenic lineage genes. Based on these observations, we conclude that exosomes might override the ECM mediated instructive signals during lineage specification of hMSC.


Asunto(s)
Adipogénesis , Exosomas/metabolismo , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/citología , Osteogénesis , Adipocitos/metabolismo , Diferenciación Celular , Línea Celular , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo
6.
Int J Mol Sci ; 19(5)2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29748496

RESUMEN

Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca2+-activated Cl− secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca2+-activated Cl− channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca2+-sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.


Asunto(s)
Anoctamina-1/genética , Señalización del Calcio/genética , Canales de Cloruro/genética , Proteínas de Neoplasias/genética , Anoctamina-1/química , Calcio/química , Agonistas de los Canales de Calcio/química , Canales de Cloruro/química , Cloruros/química , Epitelio/química , Epitelio/metabolismo , Humanos , Proteínas de Neoplasias/química
7.
Am J Physiol Cell Physiol ; 315(1): C10-C20, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29561662

RESUMEN

Attenuated Ca2+-activated Cl- secretion has previously been observed in the model of dextran sulfate sodium (DSS)-induced colitis. Prior studies have implicated dysfunctional muscarinic signaling from basolateral membranes as the potential perpetrator leading to decreased Ca2+-activated Cl- secretion. However, in our chronic model of DSS-colitis, cholinergic receptor muscarinic 3 ( Chrm3) transcript (1.028 ± 0.12 vs. 1.029 ± 0.27, P > 0.05) and CHRM3 protein expression (1.021 ± 0.24 vs. 0.928 ± 0.09, P > 0.05) were unchanged. Therefore, we hypothesized that decreased carbachol (CCH)-stimulated Cl- secretion in DSS-induced colitis could be attributed to a loss of Ca2+-activated Cl- channels (CaCC) in apical membranes of colonic epithelium. To establish this chemically-induced colitis, Balb/C mice were exposed to 4% DSS for five alternating weeks to stimulate a more moderate, chronic colitis. Upon completion of the protocol, whole thickness sections of colon were mounted in an Ussing chamber under voltage-clamp conditions. DSS-induced colitis demonstrated a complete inhibition of basolateral administration of CCH-stimulated Cl- secretion that actually displayed a reversal in polarity (15.40 ± 2.22 µA/cm2 vs. -2.47 ± 0.25 µA/cm2). Western blotting of potential CaCCs, quantified by densitometric analysis, demonstrated no change in bestrophin-2 and cystic fibrosis transmembrane regulator, whereas anoctamin-1 [ANO1, transmembrane protein 16A (TMEM16A)] was significantly downregulated (1.001 ± 0.13 vs. 0.510 ± 0.12, P < 0.05). Our findings indicate that decreased expression of TMEM16A in DSS-induced colitis contributes to the decreased Ca2+-activated Cl- secretion in murine colon.


Asunto(s)
Anoctamina-1/metabolismo , Calcio/metabolismo , Cloruros/metabolismo , Colitis/metabolismo , Colon/metabolismo , Regulación hacia Abajo/fisiología , Animales , Bestrofinas/metabolismo , Carbacol/farmacología , Canales de Cloruro/metabolismo , Colitis/inducido químicamente , Colon/efectos de los fármacos , Fibrosis Quística/metabolismo , Sulfato de Dextran/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Receptor Muscarínico M3/metabolismo
8.
Am J Physiol Gastrointest Liver Physiol ; 308(1): G56-62, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25377315

RESUMEN

We have shown recently that glucose-dependent insulinotropic polypeptide (GIP), but not glucagon-like peptide 1 (GLP-1) augments H(+) peptide cotransporter (PepT1)-mediated peptide absorption in murine jejunum. While we observed that inhibiting cAMP production decreased this augmentation of PepT1 activity by GIP, it was unclear whether PKA and/or other regulators of cAMP signaling pathway(s) were involved. This study utilized tritiated glycyl-sarcosine [(3)H-glycyl-sarcosine (Gly-Sar), a relatively nonhydrolyzable dipeptide] uptake to measure PepT1 activity in CDX2-transfected IEC-6 (IEC-6/CDX2) cells, an absorptive intestinal epithelial cell model. Similar to our earlier observations with mouse jejunum, GIP but not GLP-1 augmented Gly-Sar uptake (control vs. +GIP: 154 ± 22 vs. 454 ± 39 pmol/mg protein; P < 0.001) in IEC-6/CDX2 cells. Rp-cAMP (a PKA inhibitor) and wortmannin [phosophoinositide-3-kinase (PI3K) inhibitor] pretreatment completely blocked, whereas neither calphostin C (a potent PKC inhibitor) nor BAPTA (an intracellular Ca(2+) chelator) pretreatment affected the GIP-augmented Gly-Sar uptake in IEC-6/CDX2 cells. The downstream metabolites Epac (control vs. Epac agonist: 287 ± 22 vs. 711 ± 80 pmol/mg protein) and AKT (control vs. AKT inhibitor: 720 ± 50 vs. 75 ± 19 pmol/mg protein) were shown to be involved in GIP-augmented PepT1 activity as well. Western blot analyses revealed that both GIP and Epac agonist pretreatment enhance the PepT1 expression on the apical membranes, which is completely blocked by wortmannin in IEC-6/CDX2 cells. These observations demonstrate that both cAMP and PI3K signaling pathways augment GIP-induced peptide uptake through Epac and AKT-mediated pathways in intestinal epithelial cells, respectively. In addition, these observations also indicate that both Epac and AKT-mediated signaling pathways increase apical membrane expression of PepT1 in intestinal absorptive epithelial cells.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Polipéptido Inhibidor Gástrico/farmacología , Absorción Intestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Simportadores/metabolismo , Animales , Línea Celular , AMP Cíclico/metabolismo , Dipéptidos/metabolismo , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mucosa Intestinal/metabolismo , Transportador de Péptidos 1 , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Receptores de la Hormona Gastrointestinal/agonistas , Receptores de la Hormona Gastrointestinal/metabolismo , Transfección , Regulación hacia Arriba
9.
PLoS One ; 9(6): e98695, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24901797

RESUMEN

An elevated plasma aldosterone and an increased expression of the intermediate conductance K(+) (IK/Kcnn4) channels are linked in colon. This observation suggests that the expression of Kcnn4 gene is controlled through the action of aldosterone on its cognate receptor (i.e., mineralocorticoid receptor; MR). In order to establish this, we performed chromatin immunoprecipitation (ChIP) assay to identify the MR response elements (MREs) in a region that spanned 20 kb upstream and 10 kb downstream of the presumed transcription start site (TSS) using chromatin from the colonic epithelial cells of normal and aldosterone-treated rats. MREs were immunoprecipitated in an approximately 5 kb region that spanned the first and second introns in the aldosterone rats. These regions were individually cloned in luciferase-expression vector lacking enhancer activity. These clones were tested for enhancer activity in vitro by transfecting in HEK293T and CaCo2 cells with MR and aldosterone treatment. At least four regions were found to be responsive to the MR and aldosterone. Two regions were identified to contain MREs using bioinformatics tools. These clones lost their enhancer activity after mutation of the presumptive MREs, and thus, established the functionality of the MREs. The third and fourth clones did not contain any bioinformatically obvious MREs. Further, they lost their activity upon additional sub-cloning, which suggest cooperativity between the regions that were separated upon sub-cloning. These results demonstrate the presence of intronic MREs in Kcnn4 and suggest a highly cooperative interaction between multiple intronic response elements.


Asunto(s)
Colon/metabolismo , Regulación de la Expresión Génica , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Intrones , Mineralocorticoides/metabolismo , Elementos de Respuesta , Animales , Anticuerpos Monoclonales/farmacología , Secuencia de Bases , Línea Celular , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/química , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Antagonistas de Receptores de Mineralocorticoides , Unión Proteica , Ratas , Receptores de Mineralocorticoides/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 305(10): G678-84, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24072682

RESUMEN

Glucose-dependent insulinotropic polypeptide (GIP) secreted from jejunal mucosal K cells augments insulin secretion and plays a critical role in the pathogenesis of obesity and Type 2 diabetes mellitus. In recent studies, we have shown GIP directly activates Na-glucose cotransporter-1 (SGLT1) and enhances glucose absorption in mouse jejunum. It is not known whether GIP would also regulate other intestinal nutrient absorptive processes. The present study investigated the effect of GIP on proton-peptide cotransporter-1 (PepT1) that mediates di- and tripeptide absorption as well as peptidomimetic drugs. Immunohistochemistry studies localized both GIP receptor (GIPR) and PepT1 proteins on the basolateral and apical membranes of normal mouse jejunum, respectively. Anti-GIPR antibody detected 50-, 55-, 65-, and 70-kDa proteins, whereas anti-PepT1 detected a 70-kDa proteins in mucosal homogenates of mouse jejunum. RT-PCR analyses established the expression of GIPR- and PepT1-specific mRNA in mucosal cells of mouse jejunum. Absorption of Gly-Sar (a nondigestible dipeptide) measured under voltage-clamp conditions revealed that the imposed mucosal H(+) gradient-enhanced Gly-Sar absorption as an evidence for the presence of PepT1-mediated H(+):Gly-Sar cotransport on the apical membranes of mouse jejunum. H(+):Gly-Sar absorption was completely inhibited by cephalexin (a competitive inhibitor of PepT1) and was activated by GIP. The GIP-activated Gly-Sar absorption was completely inhibited by RP-cAMP (a cAMP antagonist). In contrast to GIP, the ileal L cell secreting glucagon-like peptide-1 (GLP-1) did not affect the H(+):Gly-Sar absorption in mouse jejunum. We conclude from these observations that GIP, but not GLP-1, directly activates PepT1 activity by a cAMP-dependent signaling pathway in jejunum.


Asunto(s)
Dipéptidos/metabolismo , Polipéptido Inhibidor Gástrico/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Absorción , Animales , Antibacterianos/farmacología , Cefalexina/farmacología , Polipéptido Inhibidor Gástrico/genética , Polipéptido Inhibidor Gástrico/farmacología , Regulación de la Expresión Génica/fisiología , Péptido 1 Similar al Glucagón/farmacología , Masculino , Ratones , Ratones Noqueados , Técnicas de Cultivo de Tejidos
11.
Can J Physiol Pharmacol ; 91(4): 275-84, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23627839

RESUMEN

Glutamine (Gln), a preferred fuel source for enterocytes, is critical for intestinal epithelial cell integrity and barrier function. Chronic enteritis inhibits apical Na(+)-Gln cotransport. It is not known whether inflammatory cytokines that are secreted during inflammation inhibit Na(+)-Gln cotransport. Thus, this study aimed to examine whether TNF-α would affect apical Na(+)-Gln cotransport in intestinal epithelial cells. In this study, the presence of Na(+)-Gln cotransport was established by measuring Gln uptake in 10 days postconfluent IEC-6 cells grown on transwell plates. Cation, amino acid specificity, and siRNA transfection studies established that Na(+)-Gln cotransport is mediated via B(0)AT1. Immunoblotting and immunofluorescence studies established the apical membrane localization of B(0)AT1 in IEC-6 cells. Tumour necrosis factor α (TNF-α) inhibited Na(+)-Gln cotransport in a concentration- and time-dependent manner with an inhibitory concentration of 1.53 nmol·L(-1). Quantitative real-time PCR and Western blot analyses indicated that TNF-α did not alter B(0)AT1-specific transcripts or protein expression level. Kinetic studies revealed that TNF-α inhibited Na(+)-Gln cotransport by reducing the affinity of the cotransporters for Gln, and this effect was antagonized by genistein. Thus, we conclude that the TNF-α inhibition of Na(+)-Gln cotransport occurs at the post-translational level, and that the IEC-6 cell line is an excellent system to study the role of cytokines in Na(+)-Gln cotransport.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Citocinas/metabolismo , Glutamina/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Sodio/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Transporte Biológico/genética , Línea Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Supervivencia Celular/genética , Citocinas/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Glutamina/genética , Inflamación/genética , Mucosa Intestinal/efectos de los fármacos , Intestinos/citología , Intestinos/efectos de los fármacos , Cinética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Ratas , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factor de Necrosis Tumoral alfa/genética
12.
Am J Physiol Cell Physiol ; 303(3): C328-33, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22648950

RESUMEN

cAMP induces both active Cl(-) and active K(+) secretion in mammalian colon. It is generally assumed that a mechanism for K(+) exit is essential to maintain cells in the hyperpolarized state, thus favoring a sustained Cl(-) secretion. Both Kcnn4c and Kcnma1 channels are located in colon, and this study addressed the questions of whether Kcnn4c and/or Kcnma1 channels mediate cAMP-induced K(+) secretion and whether cAMP-induced K(+) secretion provides the driving force for Cl(-) secretion. Forskolin (FSK)-enhanced short-circuit current (indicator of net electrogenic ion transport) and K(+) fluxes were measured simultaneously in colonic mucosa under voltage-clamp conditions. Mucosal Na(+) orthovanadate (P-type ATPase inhibitor) inhibited active K(+) absorption normally present in rat distal colon. In the presence of mucosal Na(+) orthovanadate, serosal FSK induced both K(+) and Cl(-) secretion. FSK-induced K(+) secretion was 1) not inhibited by either mucosal or serosal 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34; a Kcnn4 channel blocker), 2) inhibited (92%) by mucosal iberiotoxin (Kcnma1 channel blocker), and 3) not affected by mucosal cystic fibrosis transmembrane conductance regulator inhibitor (CFTR(inh)-172). By contrast, FSK-induced Cl(-) secretion was 1) completely inhibited by serosal TRAM-34, 2) not inhibited by either mucosal or serosal iberiotoxin, and 3) completely inhibited by mucosal CFTR(inh)-172. These results indicate that cAMP-induced colonic K(+) secretion is mediated via Kcnma1 channels located in the apical membrane and most likely contributes to stool K(+) losses in secretory diarrhea. On the other hand, cAMP-induced colonic Cl(-) secretion requires the activity of Kcnn4b channels located in the basolateral membrane and is not dependent on the concurrent activation of apical Kcnma1 channels.


Asunto(s)
Cloruros/metabolismo , Colon/metabolismo , AMP Cíclico/metabolismo , Potasio/metabolismo , Animales , Colforsina/farmacología , Colon/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/antagonistas & inhibidores , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Masculino , Péptidos/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Vanadatos/farmacología
13.
Am J Physiol Gastrointest Liver Physiol ; 301(5): G905-11, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21868633

RESUMEN

Intermediate-conductance K(+) (Kcnn4) channels in the apical and basolateral membranes of epithelial cells play important roles in agonist-induced fluid secretion in intestine and colon. Basolateral Kcnn4 channels have been well characterized in situ using patch-clamp methods, but the investigation of Kcnn4 channels in apical membranes in situ has been hampered by a layer of mucus that prevents seal formation. In the present study, we used patch-clamp methods to characterize Kcnn4 channels in the apical membrane of IEC-18 cells, a cell line derived from rat small intestine. A monolayer of IEC-18 cells grown on a permeable support is devoid of mucus, and tight junctions enable selective access to the apical membrane. In inside-out patches, Ca(2+)-dependent K(+) channels observed with iberiotoxin (a Kcnma1/large-conductance, Ca(2+)-activated K(+) channel blocker) and apamin (a Kcnn1-3/small-conductance, Ca(2+)-activated K(+) channel blocker) present in the pipette solution exhibited a single-channel conductance of 31 pS with inward rectification. The currents were reversibly blocked by TRAM-34 (a Kcnn4 blocker) with an IC(50) of 8.7 ± 2.0 µM. The channels were not observed when charybdotoxin, a peptide inhibitor of Kcnn4 channels, was added to the pipette solution. TRAM-34 was less potent in inhibiting Kcnn4 channels in patches from apical membranes than in patches from basolateral membranes, which was consistent with a preferential expression of Kcnn4c and Kcnn4b isoforms in apical and basolateral membranes, respectively. The expression of both isoforms in IEC-18 cells was confirmed by RT-PCR and Western blot analyses. This is the first characterization of Kcnn4 channels in the apical membrane of intestinal epithelial cells.


Asunto(s)
Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Mucosa Intestinal/metabolismo , Animales , Línea Celular , Células Epiteliales/citología , Mucosa Intestinal/citología , Intestinos/citología , Potenciales de la Membrana/fisiología , Ratas
14.
Am J Physiol Gastrointest Liver Physiol ; 299(3): G707-14, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20616305

RESUMEN

Intermediate conductance K(+) (Kcnn4) channels are present in both mucosal and serosal membranes of colon. However, only serosal Kcnn4 channels have been shown to be essential for agonist-induced (cAMP and Ca(2+)) anion secretion. The present study sought to determine whether mucosal Kcnn4 channels also play a role in colonic anion secretion. Mucosal-to-serosal and serosal-to-mucosal unidirectional (86)Rb (K(+) surrogate) fluxes as well as short-circuit current (I(sc); a measure of anion secretion) were measured under voltage-clamp conditions in distal colon from rats fed either a standard or K(+)-free diet. 5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazole-2-one (DC-EBIO) was used to activate Kcnn4 channels. Mucosal DC-EBIO both induced K(+) secretion and enhanced anion secretion in normal rat distal colon. The DC-EBIO-induced K(+) secretion was completely blocked by nonspecific (Ba(2+)) and Kcnn4-specific (TRAM-34) inhibitors, but was not blocked by the large-conductance K(+) (iberiotoxin), small-conductance K(+) (apamin), or KCNQ1 (chromanol 293B) specific blockers. Ba(2+) and TRAM-34 also inhibited DC-EBIO-enhanced anion secretion. The DC-EBIO-enhanced anion secretion was completely inhibited by the nonspecific anion channel blocker 5-nitro-2-(3-phenylpropyl-amino)benzoic acid, whereas it was only partially inhibited by CFTR [CFTR(inh)-172, glibenclamide]- and CaCC (niflumic acid)-specific Cl(-) channel blockers. In contrast, mucosal DC-EBIO-enhanced K(+) and anion secretion was not present in distal colon of dietary K-depleted rats, indicating absence of mucosal Kcnn4 channels. These observations indicate that mucosal Kcnn4 channels are capable of driving agonist-induced anion secretion mediated via CFTR and CaCC and likely contribute to stool K(+) losses that accompany diarrheal illnesses.


Asunto(s)
Aniones/metabolismo , Colon/fisiología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/agonistas , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Mucosa Intestinal/metabolismo , Potasio/metabolismo , Animales , Bencimidazoles/farmacología , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Impedancia Eléctrica , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
15.
World J Gastroenterol ; 15(36): 4491-8, 2009 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-19777607

RESUMEN

Inflammatory bowel disease (IBD) is a common and lifelong disabling gastrointestinal disease. Emerging treatments are being developed to target inflammatory cytokines which initiate and perpetuate the immune response. Adenosine is an important modulator of inflammation and its anti-inflammatory effects have been well established in humans as well as in animal models. High extracellular adenosine suppresses and resolves chronic inflammation in IBD models. High extracellular adenosine levels could be achieved by enhanced adenosine absorption and increased de novo synthesis. Increased adenosine concentration leads to activation of the A2a receptor on the cell surface of immune and epithelial cells that would be a potential therapeutic target for chronic intestinal inflammation. Adenosine is transported via concentrative nucleoside transporter and equilibrative nucleoside transporter transporters that are localized in apical and basolateral membranes of intestinal epithelial cells, respectively. Increased extracellular adenosine levels activate the A2a receptor, which would reduce cytokines responsible for chronic inflammation.


Asunto(s)
Adenosina/metabolismo , Antiinflamatorios/metabolismo , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/metabolismo , Transporte Biológico , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/inmunología , Proteínas de Transporte de Membrana/metabolismo , Sodio/metabolismo
16.
Am J Physiol Gastrointest Liver Physiol ; 293(4): G857-63, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17690171

RESUMEN

Electroneutral Na absorption occurs in the intestine via sodium-hydrogen exchanger (NHE) isoforms NHE2 and NHE3. Bicarbonate and butyrate both stimulate electroneutral Na absorption through NHE. Bicarbonate- but not butyrate-dependent Na absorption is inhibited by cholera toxin (CT). Long-term exposure to butyrate also influences expression of apical membrane proteins in epithelial cells. These studies investigated the effects of short- and long-term in vivo exposure to butyrate on apical membrane NHE and mRNA, protein expression, and activity in rat ileal epithelium that had been exposed to CT. Ileal loops were exposed to CT in vivo for 5 h and apical membrane vesicles were isolated. 22Na uptake was measured by using the inhibitor HOE694 to identify NHE2 and NHE3 activity, and Western blot analyses were performed. CT reduced total NHE activity by 70% in apical membrane vesicles with inhibition of both NHE2 and NHE3. Reduced NHE3 activity and protein expression remained low following removal of CT but increased to control values following incubation of the ileal loop with butyrate for 2 h. In parallel there was a 40% decrease in CT-induced increase in cAMP content. In contrast, NHE2 activity partially increased following removal of CT and was further increased to control levels by butyrate. NHE2 protein expression did not parallel its activity. Neither NHE2 nor NHE3 mRNA content were affected by CT or butyrate. These results indicate that CT has varying effects on the two apical NHE isoforms, inhibiting NHE2 activity without altering its protein expression and reducing both NHE3 activity and protein expression. Butyrate restores both CT-inhibited NHE2 and NHE3 activities to normal levels but via different mechanisms.


Asunto(s)
Butiratos/farmacología , Toxina del Cólera/farmacología , AMP Cíclico/metabolismo , Íleon/metabolismo , Intercambiadores de Sodio-Hidrógeno/fisiología , Animales , Íleon/efectos de los fármacos , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Intercambiador 3 de Sodio-Hidrógeno
17.
Pflugers Arch ; 454(3): 441-50, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17492310

RESUMEN

Studies with apical membrane vesicles have shown that two distinct and separate anion exchange processes are present in rat distal colon, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS)-sensitive CL(-)-HCO(3)(-) exchange, and DIDS-resistant Cl(-)-OH(-) exchange. These studies proposed that anion exchanger (AE)-1 isoform encodes the former as both apical membrane DIDS-sensitive CL(-)-HCO(3)(-) exchange, and AE1 specific mRNA are present only in surface cells and are downregulated in Na-depleted rats, whereas downregulated in adenoma (DRA) encodes the latter as both DIDS-resistant Cl(-)-OH(-) exchange, and DRA-specific proteins are present in apical membranes of both surface and crypt cells and are not altered in Na(+)-depleted rats. Studies were, therefore, initiated to identify the function of rat DRA (rDRA) in vitro. rDRA cDNA isolated from rat distal colon encodes a 757-amino-acid protein which has 96 and 81% homology with mDRA and hDRA, respectively. rDRA-specific mRNA expression was detectable only in specific segments of the digestive tract (duodenum, ileum, cecum, proximal colon, and distal colon) but not in the stomach, jejunum, or in the kidney, brain, heart, and lung. HEK 293 cells stably transfected with rDRA exhibited DIDS-insensitive and intracellular acid pH (pH(i) 6.5)-sensitive Cl uptake that: (1) was significantly stimulated by outward Cl(-), HCO(3)(-), isobutyrate, and possibly OH(-) gradients; (2) was saturated as a function of increasing extracellular Cl concentrations with an apparent K (m) for Cl of 2.9 +/- 0.3 mM; and (3) was inhibited competitively by extracellular oxalate but not by SO(4)(2-). A high rate of DIDS-insensitive Cl influx at pH 6.5 was also present under physiological Cl(-) concentration. Our observations that rDRA mediates DIDS-insensitive, acid pH-dependent Cl(-) uptake are consistent with prior observations that rDRA does not mediate DIDS-sensitive Cl(-)-HCO(3)(-) exchange in rat distal colon. We speculate that, in addition to mediating pH-sensitive Cl(-) uptake, rDRA may function as a modifier of other anion transport proteins.


Asunto(s)
Antiportadores/genética , Antiportadores/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bicarbonatos/metabolismo , Bicarbonatos/farmacología , Línea Celular , Cloruros/metabolismo , Cloruros/farmacología , Clonación Molecular , Colon/metabolismo , Cartilla de ADN/genética , Ácidos Grasos Volátiles/farmacología , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico/efectos de los fármacos , Datos de Secuencia Molecular , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Transportadores de Sulfato , Transfección
18.
Am J Physiol Gastrointest Liver Physiol ; 288(6): G1217-26, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15677553

RESUMEN

Luminal isobutyrate, a relatively poor metabolized short-chain fatty acid (SCFA), induces HCO(3) secretion via a Cl-independent, DIDS-insensitive, carrier-mediated process as well as inhibiting both Cl-dependent and cAMP-induced HCO(3) secretion. The mechanism(s) responsible for these processes have not been well characterized. HCO(3) secretion was measured in isolated colonic mucosa mounted in Lucite chambers using pH stat technique and during microperfusion of isolated colonic crypts. (14)C-labeled butyrate, (14)C-labeled isobutyrate, and (36)Cl uptake were also determined by apical membrane vesicles (AMV) isolated from surface and/or crypt cells. Butyrate stimulation of Cl-independent, DIDS-insensitive 5-nitro-3-(3-phenylpropyl-amino)benzoic acid-insensitive HCO(3) secretion is greater than that by isobutyrate, suggesting that both SCFA transport and metabolism are critical for HCO(3) secretion. Both lumen and serosal 25 mM butyrate inhibit cAMP-induced HCO(3) secretion to a comparable degree (98 vs. 90%). In contrast, Cl-dependent HCO(3) secretion is downregulated by lumen 25 mM butyrate considerably more than by serosal butyrate (98 vs. 37%). Butyrate did not induce HCO(3) secretion in isolated microperfused crypts, whereas an outward-directed HCO(3) gradient-driven induced (14)C-butyrate uptake by surface but not crypt cell AMV. Both (36)Cl/HCO(3) exchange and potential-dependent (36)Cl movement in AMV were inhibited by 96-98% by 20 mM butyrate. We conclude that 1) SCFA-dependent HCO(3) secretion is the result of SCFA transport across the apical membrane via a SCFA/HCO(3) exchange more than intracellular SCFA metabolism; 2) SCFA-dependent HCO(3) secretion is most likely a result of an apical membrane SCFA/HCO(3) exchange in surface epithelial cells; 3) SCFA downregulates Cl-dependent and cAMP-induced HCO(3) secretion secondary to SCFA inhibition of apical membrane Cl/HCO(3) exchange and anion channel activity, respectively.


Asunto(s)
Bicarbonatos/metabolismo , Colon/fisiología , Ácidos Grasos Volátiles/farmacocinética , Canales Iónicos/fisiología , Animales , Ácido Butírico/farmacología , Cloro/farmacocinética , AMP Cíclico/farmacología , Regulación hacia Abajo , Ácidos Grasos Volátiles/farmacología , Concentración de Iones de Hidrógeno , Mucosa Intestinal/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
19.
Am J Physiol Gastrointest Liver Physiol ; 288(5): G956-63, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15618279

RESUMEN

Zn, an essential micronutrient and second most abundant trace element in cell and tissues, reduces stool output when administered to children with acute diarrhea. The mechanism by which Zn improves diarrhea is not known but could result from stimulating Na absorption and/or inhibiting anion secretion. The aim of this study was to investigate the direct effect of Zn on intestinal epithelial ion absorption and secretion. Rat ileum was partially stripped of serosal and muscle layers, and the mucosa was mounted in lucite chambers. Potential difference and short-circuit current were measured by conventional current-voltage clamp method. 86Rb efflux and uptake were assessed for serosal K channel and Na-K-2Cl cotransport activity, respectively. Efflux experiments were performed in isolated cells preloaded with 86Rb in the presence of ouabain and bumetanide, whereas uptake experiments were performed in low-Cl isotonic buffer containing Ba and ouabain. Neither mucosal nor serosal Zn affected glucose-stimulated Na absorption. In contrast, forskolin-induced Cl secretion was markedly reduced by serosal but not mucosal addition of Zn. Zn also substantially reversed the increase in Cl secretion induced by 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) with half-maximal inhibitory concentration of 0.43 mM. In contrast, serosal Zn did not alter Cl secretion stimulated by carbachol, a Ca-dependent agonist. Zn inhibited 8-BrcAMP-stimulated 86Rb efflux but not carbachol-stimulated 86Rb efflux. Zn had no effect on bumetanide-sensitive 86Rb uptake, Na-K-ATPase, or CFTR. We conclude from these studies that Zn inhibits cAMP-induced Cl secretion by blocking basolateral membrane K channels.


Asunto(s)
Cloruros/fisiología , AMP Cíclico/fisiología , Enterocitos/fisiología , Íleon/fisiología , Canales de Potasio/fisiología , Zinc/farmacología , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , Bario/química , Carbacol/farmacología , Colforsina/farmacología , AMP Cíclico/antagonistas & inhibidores , Diarrea/fisiopatología , Enterocitos/efectos de los fármacos , Íleon/efectos de los fármacos , Masculino , Glicoproteínas de Membrana/fisiología , Proteínas de Transporte de Monosacáridos/fisiología , Canales de Potasio/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sodio/fisiología , Transportador 1 de Sodio-Glucosa , Simportadores de Cloruro de Sodio-Potasio/fisiología , Miembro 2 de la Familia de Transportadores de Soluto 12 , Factores de Tiempo
20.
Am J Physiol Cell Physiol ; 287(3): C612-21, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15308466

RESUMEN

HCO(3)(-) secretion has long been recognized in the mammalian colon, but it has not been well characterized. Although most studies of colonic HCO(3)(-) secretion have revealed evidence of lumen Cl(-) dependence, suggesting a role for apical membrane Cl(-)/HCO(3)(-) exchange, direct examination of HCO(3)(-) secretion in isolated crypt from rat distal colon did not identify Cl(-)-dependent HCO(3)(-) secretion but did reveal cAMP-induced, Cl(-)-independent HCO(3)(-) secretion. Studies were therefore initiated to determine the characteristics of HCO(3)(-) secretion in isolated colonic mucosa to identify HCO(3)(-) secretion in both surface and crypt cells. HCO(3)(-) secretion was measured in rat distal colonic mucosa stripped of muscular and serosal layers by using a pH stat technique. Basal HCO(3)(-) secretion (5.6 +/- 0.03 microeq.h(-1).cm(-2)) was abolished by removal of either lumen Cl(-) or bath HCO(3)(-); this Cl(-)-dependent HCO(3)(-) secretion was also inhibited by 100 microM DIDS (0.5 +/- 0.03 microeq.h(-1).cm(-2)) but not by 5-nitro-3-(3-phenylpropyl-amino)benzoic acid (NPPB), a Cl(-) channel blocker. 8-Bromo-cAMP induced Cl(-)-independent HCO(3)(-) secretion (and also inhibited Cl(-)-dependent HCO(3)(-) secretion), which was inhibited by NPPB and by glibenclamide, a CFTR blocker, but not by DIDS. Isobutyrate, a poorly metabolized short-chain fatty acid (SCFA), also induced a Cl(-)-independent, DIDS-insensitive, saturable HCO(3)(-) secretion that was not inhibited by NPPB. Three distinct HCO(3)(-) secretory mechanisms were identified: 1) Cl(-)-dependent secretion associated with apical membrane Cl(-)/HCO(3)(-) exchange, 2) cAMP-induced secretion that was a result of an apical membrane anion channel, and 3) SCFA-dependent secretion associated with an apical membrane SCFA/HCO(3)(-) exchange.


Asunto(s)
Bicarbonatos/metabolismo , Colon/metabolismo , Mucosa Intestinal/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Animales , Transporte Biológico/fisiología , Butiratos/farmacología , Antiportadores de Cloruro-Bicarbonato/efectos de los fármacos , Antiportadores de Cloruro-Bicarbonato/metabolismo , Cloro , Colon/efectos de los fármacos , AMP Cíclico/farmacología , Mucosa Intestinal/efectos de los fármacos , Transporte Iónico/fisiología , Isobutiratos , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA