Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Plant Cell Physiol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39275791

RESUMEN

Wound healing of partially incised Arabidopsis inflorescence stems constitutes cell proliferation that initiates mainly in pith tissues about three days after incision, and that the healing process completes in about seven days. Although the initiation mechanisms of cell proliferation have been well documented, the suppression mechanisms remain elusive. Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases well-known as proteolytic enzymes in animal systems functioning in extracellular matrix remodeling during physiological and pathological processes, including tissue differentiation, growth, defense, wound healing, and control of cancer growth. In this study, we report At2-MMP might contribute to the suppression mechanism of cell proliferation during tissue-repair process of incised inflorescence stems. At2-MMP transcript was gradually upregulated from day 0 to 5 after incision, and slightly decreased on day 7. Morphological analysis of incised stem of defected mutant at2-mmp revealed significantly enhanced cell proliferation around the incision site. Consistent with this, semi-quantitative analysis of dividing cells displayed a significant increment in the number of dividing cells in at2-mmp as compared to WT. These results showed that the upregulation of At2-MMP at the later stage of wound-healing process is likely to be involved in the completion of the process by attenuating the cell proliferation.

2.
Genes (Basel) ; 15(5)2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38790256

RESUMEN

Much research has been conducted to determine how hair regeneration is regulated, as this could provide therapeutic, cosmetic, and even psychological interventions for hair loss. The current study focused on the hair growth effect and effective utilization of fatty oil obtained from Bryde's whales through a high-throughput DNA microarray approach in conjunction with immunohistochemical observations. The research also examined the mechanisms and factors involved in hair growth. In an experiment using female C57BL/6J mice, the vehicle control group (VC: propylene glycol: ethanol: water), the positive control group (MXD: 3% minoxidil), and the experimental group (WO: 20% whale oil) were topically applied to the dorsal skin of the mouse. The results showed that 3% MXD and 20% WO were more effective than VC in promoting hair growth, especially 20% WO. Furthermore, in hematoxylin and eosin-stained dorsal skin tissue, an increase in the number of hair follicles and subcutaneous tissue thickness was observed with 20% WO. Whole-genome transcriptome analysis also confirmed increases for 20% WO in filaggrin (Flg), a gene related to skin barrier function; fibroblast growth factor 21 (Fgf21), which is involved in hair follicle development; and cysteine-rich secretory protein 1 (Crisp1), a candidate gene for alopecia areata. Furthermore, the results of KEGG pathway analysis indicated that 20% WO may have lower stress and inflammatory responses than 3% MXD. Therefore, WO is expected to be a safe hair growth agent.


Asunto(s)
Cabello , Aceites , Animales , Femenino , Ratones , Biología Computacional/métodos , Proteínas Filagrina , Perfilación de la Expresión Génica/métodos , Cabello/crecimiento & desarrollo , Cabello/efectos de los fármacos , Cabello/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/efectos de los fármacos , Folículo Piloso/crecimiento & desarrollo , Ratones Endogámicos C57BL , Minoxidil/administración & dosificación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Piel/metabolismo , Piel/efectos de los fármacos , Ballenas , Aceites/administración & dosificación
3.
Plant Sci ; 334: 111736, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37211221

RESUMEN

The tomato is well-known for its anti-oxidative and anti-cancer properties, and with a wide range of health benefits is an important cash crop for human well-being. However, environmental stresses (especially abiotic) are having a deleterious effect on plant growth and productivity, including tomato. In this review, authors describe how salinity stress imposes risk consequences on growth and developmental processes of tomato through toxicity by ethylene (ET) and cyanide (HCN), and ionic, oxidative, and osmotic stresses. Recent research has clarified how salinity stress induced-ACS and - ß-CAS expressions stimulate the accumulation of ET and HCN, wherein the action of salicylic acid (SA),compatible solutes (CSs), polyamines (PAs) and ET inhibitors (ETIs) regulate ET and HCN metabolism. Here we emphasize how ET, SA and PA cooperates with mitochondrial alternating oxidase (AOX), salt overly sensitive (SOS) pathways and the antioxidants (ANTOX) system to better understand the salinity stress resistance mechanism. The current literature evaluated in this paper provides an overview of salinity stress resistance mechanism involving synchronized routes of ET metabolism by SA and PAs, connecting regulated network of central physiological processes governing through the action of AOX, ß-CAS, SOS and ANTOX pathways, which might be crucial for the development of tomato.


Asunto(s)
Etilenos , Estrés Salino , Solanum lycopersicum , Etilenos/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Estrés Salino/fisiología
4.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36902003

RESUMEN

Sweat plays a critical role in human body, including thermoregulation and the maintenance of the skin environment and health. Hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion, resulting in severe skin conditions (pruritus and erythema). Bioactive peptide and pituitary adenylate cyclase-activating polypeptide (PACAP) was isolated and identified to activate adenylate cyclase in pituitary cells. Recently, it was reported that PACAP increases sweat secretion via PAC1R in mice and promotes the translocation of AQP5 to the cell membrane through increasing intracellular [Ca2+] via PAC1R in NCL-SG3 cells. However, intracellular signaling mechanisms by PACAP are poorly clarified. Here, we used PAC1R knockout (KO) mice and wild-type (WT) mice to observe changes in AQP5 localization and gene expression in sweat glands by PACAP treatment. Immunohistochemistry revealed that PACAP promoted the translocation of AQP5 to the lumen side in the eccrine gland via PAC1R. Furthermore, PACAP up-regulated the expression of genes (Ptgs2, Kcnn2, Cacna1s) involved in sweat secretion in WT mice. Moreover, PACAP treatment was found to down-regulate the Chrna1 gene expression in PAC1R KO mice. These genes were found to be involved in multiple pathways related to sweating. Our data provide a solid basis for future research initiatives in order to develop new therapies to treat sweating disorders.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Sudor , Ratones , Humanos , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Sudor/metabolismo , Sudoración , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Hipófisis/metabolismo
5.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835581

RESUMEN

The study aimed to understand mechanism/s of neuronal outgrowth in the rat adrenal-derived pheochromocytoma cell line (PC12) under pituitary adenylate cyclase-activating polypeptide (PACAP) treatment. Neurite projection elongation was suggested to be mediated via Pac1 receptor-mediated dephosphorylation of CRMP2, where GSK-3ß, CDK5, and Rho/ROCK dephosphorylated CRMP2 within 3 h after addition of PACAP, but the dephosphorylation of CRMP2 by PACAP remained unclear. Thus, we attempted to identify the early factors in PACAP-induced neurite projection elongation via omics-based transcriptomic (whole genome DNA microarray) and proteomic (TMT-labeled liquid chromatography-tandem mass spectrometry) analyses of gene and protein expression profiles from 5-120 min after PACAP addition. The results revealed a number of key regulators involved in neurite outgrowth, including known ones, called 'Initial Early Factors', e.g., genes Inhba, Fst, Nr4a1,2,3, FAT4, Axin2, and proteins Mis12, Cdk13, Bcl91, CDC42, including categories of 'serotonergic synapse, neuropeptide and neurogenesis, and axon guidance'. cAMP signaling and PI3K-Akt signaling pathways and a calcium signaling pathway might be involved in CRMP2 dephosphorylation. Cross-referencing previous research, we tried to map these molecular components onto potential pathways, and we may provide important new information on molecular mechanisms of neuronal differentiation induced by PACAP. Gene and protein expression data are publicly available at NCBI GSE223333 and ProteomeXchange, identifier PXD039992.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Ratas , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Células PC12 , Glucógeno Sintasa Quinasa 3 beta/genética , Fosfatidilinositol 3-Quinasas/genética , Proteómica , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proyección Neuronal
6.
Front Microbiol ; 12: 729032, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803944

RESUMEN

Microorganisms produce various secondary metabolites for growth and survival. During iron stress, they produce secondary metabolites termed siderophores. In the current investigation, antifungal activity of catecholate siderophore produced by Escherichia coli has been assessed against Aspergillus nidulans. Exogenous application of the bacterial siderophore to fungal cultures resulted in decreased colony size, increased filament length, and changes in hyphal branching pattern. Growth inhibition was accompanied with increased intracellular iron content. Scanning electron microscopy revealed dose-dependent alteration in fungal morphology. Fluorescent staining by propidium iodide revealed cell death in concert with growth inhibition with increasing siderophore concentration. Antioxidative enzyme activity was also compromised with significant increase in catalase activity and decrease in ascorbate peroxidase activity. Siderophore-treated cultures showed increased accumulation of reactive oxygen species as observed by fluorescence microscopy and enhanced membrane damage in terms of malondialdehyde content. Antifungal property might thus be attributed to xenosiderophore-mediated iron uptake leading to cell death. STRING analysis showed interaction of MirB (involved in transport of hydroxamate siderophore) and MirA (involved in transport of catecholate siderophore), confirming the possibility of uptake of iron-xenosiderophore complex through fungal transporters. MirA structure was modeled and validated with 95% residues occurring in the allowed region. In silico analysis revealed MirA-Enterobactin-Fe3+ complex formation. Thus, the present study reveals a promising antifungal agent in the form of catecholate siderophore and supports involvement of MirA fungal receptors in xenosiderophore uptake.

7.
Peptides ; 146: 170647, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34562532

RESUMEN

The process of sweating plays an important role in the human body, including thermoregulation and maintenance of the environment and health of the skin. It is known that the conditions of hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion and can result in severe skin conditions such as pruritus and erythema, which significantly reduce the patient's quality of life. However, there are many aspects of the signaling mechanisms in the process of sweating that have not been clarified, and no effective therapies or therapeutic agents have yet been discovered. Previously, it was reported that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes sweating, but details of the underlying mechanism has not been clarified. We used immortalized human eccrine gland cells (NCL-SG3 cell) to investigate how sweat secretion is induced by PACAP. Intracellular Ca2+ levels were increased in these cells following their exposure to physiological concentrations of PACAP. Intracellular Ca2+ was not elevated when cells were concomitantly treated with PA-8, a specific PAC1-R antagonist, suggesting that PAC1-R is involved in the elevation of intracellular Ca2+ levels in response to PACAP treatment. Furthermore, immunocytochemistry experiments showed that aquaporin-5 was translocated from the cytoplasm to the cell membrane by PACAP. These results suggest that PACAP acts on eccrine sweat glands to promote sweat secretion by translocation of aquaporin-5 to the cell membrane in response to increased levels of intracellular Ca2+. These findings also provide a solid basis for future research initiatives to develop new therapies to treat sweating disorders.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Glándulas Sudoríparas/efectos de los fármacos , Acuaporina 5/metabolismo , Calcio/metabolismo , Línea Celular Transformada , Humanos , Transporte de Proteínas , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Glándulas Sudoríparas/citología , Glándulas Sudoríparas/metabolismo
8.
Neural Plast ; 2021: 2522454, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422037

RESUMEN

The present research investigates the molecular mechanism of neurite outgrowth (protrusion elongation) under pituitary adenylate cyclase-activating polypeptide (PACAP) 38 treatments using a rat adrenal-derived pheochromocytoma cell line-PC12. This study specifically looks into the regulation of PACAP38-induced collapsing response mediator protein 2 (CRMP2) previously identified in a mouse brain ischemia model and which could be recovered by PACAP38 treatment. Previously, DNA microarray analysis revealed that PACAP 38-mediated neuroprotection involved not only CRMP2 but also pathways related to glycogen synthase kinase-3ß (GSK-3ß) and other signaling components. Thus, to clarify whether CRMP2 acts directly on PACAP38 or through GSK-3ß as part of the mechanism of PACAP38-induced neurite outgrowth, we observed neurite outgrowth in the presence of GSK-3ß inhibitors and activators. PC12 cells were treated with PACAP38 being added to the cell culture medium at concentrations of 10-7 M, 10-8 M, and 10-9 M. Post PACAP38 treatment, immunostaining was used to confirm protrusion elongation of the PC12 cells, while RT-PCR, two-dimensional gel electrophoresis in conjunction with Western blotting, and inhibition experiments were performed to confirm the expression of the PACAP gene, its receptors, and downstream signaling components. Our data show that neurite protrusion elongation by PACAP38 (10-7 M) in PC12 cells is mediated through the PAC1-R receptor as demonstrated by its suppression by a specific inhibitor PA-8. Inhibitor experiments suggested that PACAP38-triggered neurite protrusion follows a GSK-3ß-regulated pathway, where the AKT and cAMP/ERK pathways are involved and where the inhibition of Rho/Roc could enhance neurite protrusion under PACAP38 stimulation. Although we could not yet confirm the exact role and position of CRMP2 in PACAP38-mediated PC12 cell elongation, it appears that its phosphorylation and dephosphorylation have a correlation with the neurite protrusion elongation through the interplay of CDK5, which needs to be investigated further.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proyección Neuronal/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas del Tejido Nervioso/genética , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos
9.
Biochem Biophys Rep ; 27: 101063, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34258397

RESUMEN

Development of the methods to examine the molecular targets of biologically active compounds is one of the most important subjects in experimental biology/biochemistry. To evaluate the usability of the (7-nitro-2,1,3-benzoxadiazole)-thioether (NBD-S) probe for this purpose, bioactive chemical probe (1) as the cellulose biosynthesis (CB) inhibitor was synthesized and tested. As a result, a variety of fluorescently-labeled particles and organelles were found in the columella root cap cells of radish plants. Of note, well-defined cellular organelles were clearly recognized in the detaching root cap cells (border-like cells). These results imply that the bioactive NBD-S chemical probe could be a valuable direct-labeling reagent. Analysis of these fluorescent substances would be helpful in providing new information on defined molecular targets and events.

10.
Sci Rep ; 9(1): 18361, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797981

RESUMEN

Malformation of mango inflorescences (MMI) disease causes severe economic losses worldwide. Present research investigates the underlying causes of MMI. Results revealed significantly higher levels of cyanide, a by-product of ethylene biosynthesis, in malformed inflorescences (MI) of mango cultivars. There was a significant rise in ACS transcripts, ACS enzyme activity and cyanide and ethylene levels in MI as compared to healthy inflorescences (HI). Significant differences in levels of methionine, phosphate, S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, ascorbate and glutathione, and activities of dehydroascorbate reductase and glutathione reductase were seen in MI over HI. Further, a lower expression of ß-cyanoalanine synthase (ß-CAS) transcript was associated with decreased cellular ß-CAS activity in MI, indicating accumulation of unmetabolized cyanide. TEM studies showed increased gum-resinosis and necrotic cell organelles, which might be attributed to unmetabolized cyanide. In field trials, increased malformed-necrotic-inflorescence (MNI) by spraying ethrel and decreased MNI by treating with ethylene inhibitors (silver and cobalt ions) further confirmed the involvement of cyanide in MMI. Implying a role for cyanide in MMI at the physiological and molecular level, this study will contribute to better understanding of the etiology of mango inflorescence malformation, and also help manipulate mango varieties genetically for resistance to malformation.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Liasas/genética , Mangifera/genética , Enfermedades de las Plantas/genética , Cianuros/metabolismo , Etilenos/metabolismo , Fusarium/genética , Fusarium/patogenicidad , Regulación de la Expresión Génica de las Plantas , Inactivación Metabólica/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/microbiología , Mangifera/crecimiento & desarrollo , Mangifera/microbiología , Metionina/metabolismo , Fosfatos/metabolismo , Enfermedades de las Plantas/microbiología , S-Adenosilmetionina/metabolismo
11.
Plant Signal Behav ; 14(10): e1644594, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31342859

RESUMEN

The present research examines the possibility of finding bio-molecular compounds from the double cherry blossom (termed as 'Gosen-Sakura' of Gosen-city, Niigata-prefecture, Japan) leaves, which have been long used in the preparation of the traditional Japanese sweet (wagashi) - 'sakura-mochi'. Based on its indicated anti-microbial properties historically, our study provides a new low temperature vacuum extraction method for extracting 'near natural form of water soluble leaf (cell) extracts from the Gosen-Sakura, and demonstrates the presence of some 'novel' compound(s) with anti-tumor cell lines proliferation inhibitory affects through the MTT assay. To our knowledge, no reports exist on the sakura tree 'leaf (cell) extracts' inhibiting tumor cell line growth. We further examined and compared the effects of known compounds with anti-tumor activity, coumarin and benzyl alcohol with Gosen-Sakura leaf extract; results lead us to hypothesize that the Gosen-Sakura leaf extract contains substance(s) other than the above two known compounds, with antitumor effect. Additionally, we speculate on the underlying mechanism of action of the Gosen-Sakura leaf extract by targeting cell division at the point of DNA synthesis and causing apoptosis. In conclusion, we present scientific evidence on the presence of certain 'novel' biomolecule(s), with anti-tumor activity, in the Gosen-Sakura leaf which has been long used in Japanese sweet - the 'sakura-mochi'.


Asunto(s)
Frío , Flores/química , Fitoquímicos/farmacología , Hojas de la Planta/química , Prunus/química , Vacio , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Extractos Vegetales/farmacología
12.
Proc Natl Acad Sci U S A ; 116(22): 10988-10993, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31085646

RESUMEN

Regular exercise and dietary supplements with antioxidants each have the potential to improve cognitive function and attenuate cognitive decline, and, in some cases, they enhance each other. Our current results reveal that low-intensity exercise (mild exercise, ME) and the natural antioxidant carotenoid astaxanthin (AX) each have equivalent beneficial effects on hippocampal neurogenesis and memory function. We found that the enhancement by ME combined with AX in potentiating hippocampus-based plasticity and cognition is mediated by leptin (LEP) made and acting in the hippocampus. In assessing the combined effects upon wild-type (WT) mice undergoing ME with or without an AX diet for four weeks, we found that, when administrated alone, ME and AX separately enhanced neurogenesis and spatial memory, and when combined they were at least additive in their effects. DNA microarray and bioinformatics analyses revealed not only the up-regulation of an antioxidant gene, ABHD3, but also that the up-regulation of LEP gene expression in the hippocampus of WT mice with ME alone is further enhanced by AX. Together, they also increased hippocampal LEP (h-LEP) protein levels and enhanced spatial memory mediated through AKT/STAT3 signaling. AX treatment also has direct action on human neuroblastoma cell lines to increase cell viability associated with increased LEP expression. In LEP-deficient mice (ob/ob), chronic infusion of LEP into the lateral ventricles restored the synergy. Collectively, our findings suggest that not only h-LEP but also exogenous LEP mediates effects of ME on neural functions underlying memory, which is further enhanced by the antioxidant AX.


Asunto(s)
Antioxidantes/farmacología , Hipocampo , Leptina/metabolismo , Neurogénesis/efectos de los fármacos , Condicionamiento Físico Animal , Memoria Espacial/efectos de los fármacos , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Ratones , Xantófilas/farmacología
13.
Data Brief ; 20: 516-520, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30191164

RESUMEN

The data reported here are associated with the article "Comparative phosphoproteome analysis upon ethylene and abscisic acid treatment in Glycine max leaves" [1]. Phosphorylation plays a critical role in the regulation of the biological activities of proteins. However, phosphorylation-mediated regulation of proteins and pathways involved in ethylene (ET) and abscisic acid (ABA) signaling is currently poorly understood. Therefore, we used a shotgun proteomics approach to identify the phosphopeptides and phosphoproteins in response to ET, ABA and combined ET+ABA treatments. Here, we present the Mass spectrometry, protein-protein interaction, Gene ontology and KEGG data associated with the ET and ABA signaling in soybean leaves [1].

14.
Plant Physiol Biochem ; 130: 173-180, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29990770

RESUMEN

Abscisic acid (ABA) and ethylene play key roles in growth and development of plants. Several attempts have been made to investigate the ABA and ethylene-induced signaling in plants, however, the involvement of phosphorylation and dephosphorylation in fine-tuning of the induced response has not been investigated much. Here, a phosphoproteomic analysis was carried out to identify the phosphoproteins in response to ABA, ethylene (ET) and combined ABA + ET treatments in soybean leaves. Phosphoproteome analysis led to the identification of 802 phosphopeptides, representing 422 unique protein groups. A comparative analysis led to the identification of 40 phosphosites that significantly changed in response to given hormone treatments. Functional annotation of the identified phosphoproteins showed that these were majorly involved in nucleic acid binding, signaling, transport and stress response. Localization prediction showed that 67% of the identified phosphoproteins were nuclear, indicating their potential involvement in gene regulation. Taken together, these results provide an overview of the ABA, ET and combined ABA + ET signaling in soybean leaves at phosphoproteome level.


Asunto(s)
Etilenos/farmacología , Glycine max/efectos de los fármacos , Fosfoproteínas/metabolismo , Hojas de la Planta/efectos de los fármacos , Ácido Abscísico , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteoma , Glycine max/fisiología
15.
Appl Microbiol Biotechnol ; 102(14): 6001-6021, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29728727

RESUMEN

Colletotrichum falcatum, a hemibiotrophic fungal pathogen, causes one of the major devastating diseases of sugarcane-red rot. C. falcatum secretes a plethora of molecular signatures that might play a crucial role during its interaction with sugarcane. Here, we report the purification and characterization of a novel secreted protein of C. falcatum that elicits defense responses in sugarcane and triggers hypersensitive response (HR) in tobacco. The novel protein purified from the culture filtrate of C. falcatum was identified by MALDI TOF/TOF MS and designated as C. falcatum plant defense-inducing protein 1 (CfPDIP1). Temporal transcriptional profiling showed that the level of CfPDIP1 expression was greater in incompatible interaction than the compatible interaction until 120 h post-inoculation (hpi). EffectorP, an in silico tool, has predicted CfPDIP1 as a potential effector. Functional characterization of full length and two other domain deletional variants (CfPDIP1ΔN1-21 and CfPDIP1ΔN1-45) of recombinant CfPDIP1 proteins has indicated that CfPDIP1ΔN1-21 variant elicited rapid alkalinization and induced a relatively higher production of hydrogen peroxide (H2O2) in sugarcane suspension culture. However, in Nicotiana tabacum, all the three forms of recombinant CfPDIP1 proteins triggered HR along with the induction of H2O2 production and callose deposition. Further characterization using detached leaf bioassay in sugarcane revealed that foliar priming with CfPDIP1∆1-21 has suppressed the extent of lesion development, even though the co-infiltration of CfPDIP1∆1-21 with C. falcatum on unprimed leaves increased the extent of lesion development than control. Besides, the foliar priming has induced systemic expression of major defense-related genes with the concomitant reduction of pathogen biomass and thereby suppression of red rot severity in sugarcane. Comprehensively, the results have suggested that the novel protein, CfPDIP1, has the potential to trigger a multitude of defense responses in sugarcane and tobacco upon priming and might play a potential role during plant-pathogen interactions.


Asunto(s)
Colletotrichum/química , Proteínas Fúngicas/farmacología , Interacciones Huésped-Patógeno , Nicotiana/efectos de los fármacos , Saccharum/efectos de los fármacos , Colletotrichum/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Saccharum/microbiología , Nicotiana/microbiología
16.
Proteomics ; 18(7): e1700366, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29457974

RESUMEN

Phytohormones are central to plant growth and development. Despite the advancement in our knowledge of hormone signaling, downstream targets, and their interactions upon hormones action remain largely fragmented, especially at the protein and metabolite levels. With an aim to get new insight into the effects of two hormones, ethylene (ET) and abscisic acid (ABA), this study utilizes an integrated proteomics and metabolomics approach to investigate their individual and combined (ABA+ET) signaling in soybean leaves. Targeting low-abundance proteins, our previously established protamine sulfate precipitation method was applied, followed by label-free quantification of identified proteins. A total of 4129 unique protein groups including 1083 differentially modulated in one (individual) or other (combined) treatments were discerned. Functional annotation of the identified proteins showed an increased abundance of proteins related to the flavonoid and isoflavonoid biosynthesis and MAPK signaling pathway in response to ET treatment. HPLC analysis showed an accumulation of isoflavones (genistin, daidzein, and genistein) upon ET treatment, in agreement with the proteomics results. A metabolome analysis assigned 79 metabolites and further confirmed the accumulation of flavonoids and isoflavonoids in response to ET. A potential cross-talk between ET and MAPK signaling, leading to the accumulation of flavonoids and isoflavonoids in soybean leaves is suggested.


Asunto(s)
Flavonoides/metabolismo , Glycine max/metabolismo , Isoflavonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Etilenos/metabolismo , Etilenos/farmacología , Flavonoides/análisis , Regulación de la Expresión Génica de las Plantas , Sistema de Señalización de MAP Quinasas , Redes y Vías Metabólicas , Metabolómica , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteómica , Glycine max/efectos de los fármacos
17.
J Hered ; 109(2): 206-211, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28992201

RESUMEN

Here, we present an update on the next level of experiments studying the impact of the gamma radiation environment, created post-March, 2011 nuclear accident at Fukushima Daiichi nuclear power plant, on rice plant and its next generation-the seed. Japonica-type rice (Oryza sativa L. cv. Koshihikari) plant was exposed to low-level gamma radiation (~4 µSv/h) in the contaminated Iitate Farm field in Iitate village (Fukushima). Seeds were harvested from these plants at maturity, and serve as the treated group. For control group, seeds (cv. Koshihikari) were harvested from rice grown in clean soil in Soma city, adjacent to Iitate village, in Fukushima. Focusing on the multi-omics approach, we have investigated the dry mature rice seed transcriptome, proteome, and metabolome following cultivation of rice in the radionuclide contaminated soil and compared it with the control group seed (non-radioactive field-soil environment). This update article presents an overview of both the multi-omics approach/technologies and the first findings on how rice seed has changed or adapted its biology to the low-level radioactive environment.


Asunto(s)
Accidente Nuclear de Fukushima , Rayos gamma/efectos adversos , Oryza/efectos de la radiación , Contaminantes Radiactivos/toxicidad , Adaptación Biológica , Semillas/efectos de la radiación
18.
J Proteomics ; 169: 41-57, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28528990

RESUMEN

Solanaceae is one of the major economically important families of higher plants and has played a central role in human nutrition since the dawn of human civilization. Therefore, researchers have always been interested in understanding the complex behavior of Solanaceae members to identify key transcripts, proteins or metabolites, which are potentially associated with major traits. Proteomics studies have contributed significantly to understanding the physiology of Solanaceae members. A compilation of all the published reports showed that both gel-based (75%) and gel-free (25%) proteomic technologies have been utilized to establish the proteomes of different tissues, organs, and organelles under normal and adverse environmental conditions. Among the Solanaceae members, most of the research has been focused on tomato (42%) followed by potato (28%) and tobacco (20%), owing to their economic importance. This review comprehensively covers the progress made so far in the field of Solanaceae proteomics including novel methods developed to isolate the proteins from different tissues. Moreover, key proteins presented in this review can serve as a resource to select potential targets for crop improvement. We envisage that information presented in this review would enable us to design the stress tolerant plants with enhanced yields.


Asunto(s)
Proteómica/métodos , Solanaceae/química , Adaptación Fisiológica , Solanum lycopersicum/química , Proteínas de Plantas/análisis , Proteómica/tendencias , Solanum tuberosum/química , Nicotiana/química
19.
J Proteomics ; 169: 2-20, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28546091

RESUMEN

Colletotrichum falcatum, an intriguing hemibiotrophic fungal pathogen causes red rot, a devastating disease of sugarcane. Repeated in vitro subculturing of C. falcatum under dark condition alters morphology and reduces virulence of the culture. Hitherto, no information is available on this phenomenon at molecular level. In this study, the in vitro secretome of C. falcatum cultured under light and dark conditions was analyzed using 2-DE coupled with MALDI TOF/TOF MS. Comparative analysis identified nine differentially abundant proteins. Among them, seven proteins were less abundant in the dark-cultured C. falcatum, wherein only two protein species of a cerato-platanin protein called EPL1 (eliciting plant response-like protein) were found to be highly abundant. Transcriptional expression of candidate high abundant proteins was profiled during host-pathogen interaction using qRT-PCR. Comprehensively, this comparative secretome analysis identified five putative effectors, two pathogenicity-related proteins and one pathogen-associated molecular pattern (PAMP) of C. falcatum. Functional characterization of three distinct domains of the PAMP (EPL1) showed that the major cerato-platanin domain (EPL1∆N1-92) is exclusively essential for inducing defense and hypersensitive response (HR) in sugarcane and tobacco, respectively. Further, priming with EPL1∆N1-92 protein induced systemic resistance and significantly suppressed the red rot severity in sugarcane. BIOLOGICAL SIGNIFICANCE: Being the first secretomic investigation of C. falcatum, this study has identified five potential effectors, two pathogenicity-related proteins and a PAMP. Although many reports have highlighted the influence of light on pathogenicity, this study has established a direct link between light and expression of effectors, for the first time. This study has presented the influence of a novel N-terminal domain of EPL1 in physical and biological properties and established the functional role of major cerato-platanin domain of EPL1 as a potential elicitor inducing systemic resistance in sugarcane. Comprehensively, the study has identified proteins that putatively contribute to virulence of C. falcatum and for the first time, demonstrated the potential role of EPL1 in inducing PAMP-triggered immunity (PTI) in sugarcane.


Asunto(s)
Colletotrichum/química , Proteínas Fúngicas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/análisis , Saccharum/inmunología , Colletotrichum/patogenicidad , Proteínas Fúngicas/fisiología , Interacciones Huésped-Patógeno/inmunología , Luz , Enfermedades de las Plantas/microbiología
20.
J Proteomics ; 169: 202-214, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28232208

RESUMEN

Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases resulting in a huge loss of the total rice productivity. The initial interaction between rice and Xoo takes place in the host apoplast and is mediated primarily by secretion of various proteins from both partners. Yet, such secretory proteins remain to be largely identified and characterized. This study employed a label-free quantitative proteomics approach and identified 404 and 323 Xoo-secreted proteins from in vitro suspension-cultured cells and in planta systems, respectively. Gene Ontology analysis showed their involvement primarily in catalytic, transporter, and ATPase activities. Of a particular interest was a Xoo cysteine protease (XoCP), which showed dramatic increase in its protein abundance in planta upon Xoo interaction with a susceptible rice cultivar. Knock-out mutants of XoCP showed reduced pathogenicity on rice, highlighting its potential involvement in Xoo virulence. Besides, a parallel analysis of in planta rice-secreted proteins resulted in identification of 186 secretory proteins mainly associated with the catalytic, antioxidant, and electron carrier activities. Identified secretory proteins were exploited to shed light on their possible role in the rice-Xoo interaction, and that further deepen our understanding of such interaction. BIOLOGICAL SIGNIFICANCE: Xanthomonas oryzae pv. oryzae (Xoo), causative agent of bacterial blight disease, results in a huge loss of the total rice productivity. Using a label-free quantitative proteomics approach, we identified 727 Xoo- and 186 rice-secreted proteins. Functional annotation showed Xoo secreted proteins were mainly associated with the catalytic, transporter, and ATPase activities while the rice secreted proteins were mainly associated with the catalytic, antioxidant, and electron carrier activities. A novel Xoo cysteine protease (XoCP) was identified, showing dramatic increase in its protein abundance in planta upon Xoo interaction with a susceptible rice cultivar. Knock-out mutants of XoCP showed reduced pathogenicity on rice, highlighting its potential involvement in Xoo virulence.


Asunto(s)
Proteasas de Cisteína/fisiología , Oryza/microbiología , Xanthomonas/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Proteasas de Cisteína/toxicidad , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Proteómica/métodos , Virulencia , Xanthomonas/enzimología , Xanthomonas/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA