Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622339

RESUMEN

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Asunto(s)
Coffea , Coffea/genética , Café , Genoma de Planta/genética , Metagenómica , Fitomejoramiento
2.
BMC Plant Biol ; 21(1): 108, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33618672

RESUMEN

BACKGROUND: Mango, Mangifera indica L., an important tropical fruit crop, is grown for its sweet and aromatic fruits. Past improvement of this species has predominantly relied on chance seedlings derived from over 1000 cultivars in the Indian sub-continent with a large variation for fruit size, yield, biotic and abiotic stress resistance, and fruit quality among other traits. Historically, mango has been an orphan crop with very limited molecular information. Only recently have molecular and genomics-based analyses enabled the creation of linkage maps, transcriptomes, and diversity analysis of large collections. Additionally, the combined analysis of genomic and phenotypic information is poised to improve mango breeding efficiency. RESULTS: This study sequenced, de novo assembled, analyzed, and annotated the genome of the monoembryonic mango cultivar 'Tommy Atkins'. The draft genome sequence was generated using NRGene de-novo Magic on high molecular weight DNA of 'Tommy Atkins', supplemented by 10X Genomics long read sequencing to improve the initial assembly. A hybrid population between 'Tommy Atkins' x 'Kensington Pride' was used to generate phased haplotype chromosomes and a highly resolved phased SNP map. The final 'Tommy Atkins' genome assembly was a consensus sequence that included 20 pseudomolecules representing the 20 chromosomes of mango and included ~ 86% of the ~ 439 Mb haploid mango genome. Skim sequencing identified ~ 3.3 M SNPs using the 'Tommy Atkins' x 'Kensington Pride' mapping population. Repeat masking identified 26,616 genes with a median length of 3348 bp. A whole genome duplication analysis revealed an ancestral 65 MYA polyploidization event shared with Anacardium occidentale. Two regions, one on LG4 and one on LG7 containing 28 candidate genes, were associated with the commercially important fruit size characteristic in the mapping population. CONCLUSIONS: The availability of the complete 'Tommy Atkins' mango genome will aid global initiatives to study mango genetics.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/genética , Frutas/crecimiento & desarrollo , Frutas/genética , Mangifera/crecimiento & desarrollo , Mangifera/genética , Gusto/genética , Variación Genética , Genoma de Planta , Genotipo , Fitomejoramiento/métodos
3.
Mol Plant Microbe Interact ; 33(11): 1340-1352, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32757880

RESUMEN

DNA methylation is a widespread epigenetic mark that affects gene expression and transposon mobility during plant development and stress responses. However, the role of DNA methylation in regulating the expression of microRNA (miRNA) genes remains largely unexplored. Here, we analyzed DNA methylation changes of miRNA genes using a pair of soybean (Glycine max) near-isogenic lines (NILs) differing in their response to soybean cyst nematode (SCN; Heterodera glycines). Differences in global DNA methylation levels over miRNA genes in response to SCN infection were observed between the isogenic lines. miRNA genes with significant changes in DNA methylation levels in the promoter and primary transcript-coding regions were detected in both lines. In the susceptible isogenic line (NIL-S), 82 differentially methylated miRNAs were identified in response to SCN infection whereas, in the resistant isogenic line (NIL-R), only 16 differentially methylated miRNAs were identified. Interestingly, gma-miR5032, gma-miR5043, gma-miR1520b, and gma-2107-ch16 showed opposite methylation patterns in the isogenic lines. In addition, the miRNA paralogs gma-miR5770a and gma-miR5770b showed hypermethylation and hypomethylation in NIL-S and NIL-R, respectively. Gene expression quantification of gma-miR5032, gma-miR5043, gma-miR1520b, and gma-miR5770a/b and their confirmed targets indicated a role of DNA methylation in regulating miRNA expression and, thus, their targets upon SCN infection. Furthermore, overexpression of these four miRNAs in NIL-S using transgenic hairy root system enhanced plant resistance to SCN to various degrees with a key role observed for miR5032. Together, our results provide new insights into the role of epigenetic mechanisms in controlling miRNA regulatory function during SCN-soybean interactions.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Metilación de ADN , Glycine max/genética , Interacciones Huésped-Parásitos/genética , MicroARNs , Enfermedades de las Plantas/parasitología , Tylenchoidea , Animales , Epigénesis Genética , MicroARNs/genética , Enfermedades de las Plantas/genética , Glycine max/parasitología
4.
New Phytol ; 227(1): 168-184, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32112408

RESUMEN

DNA methylation is a widespread epigenetic mark that contributes to transcriptome reprogramming during plant-pathogen interactions. However, the distinct role of DNA methylation in establishing resistant and susceptible responses remains largely unexplored. Here, we developed and used a pair of near-isogenic lines (NILs) to characterize DNA methylome landscapes of soybean roots during the susceptible and resistant interactions with soybean cyst nematode (SCN; Heterodera glycines). We also compared the methylomes of the NILs and their parents to identify introduced and stably inherited methylation variants. The genomes of the NILs were substantially differentially methylated under uninfected conditions. This difference was associated with differential gene expression that may prime the NIL responses to SCN infection. In response to SCN infection, the susceptible line exhibited reduced global methylation levels in both protein-coding genes and transposable elements, whereas the resistant line showed the opposite response, increased global methylation levels. Heritable and novel nonparental differentially methylated regions overlapping with genes associated with soybean response to SCN infection were identified and validated using transgenic hairy root system. Our analyses indicate that DNA methylation patterns associated with the susceptible and resistant interactions are highly specific and that novel and stably inherited methylation variants are of biological significance.


Asunto(s)
Quistes , Glycine max , Animales , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Glycine max/genética
5.
Plant Signal Behav ; 12(9): e1362521, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-28805485

RESUMEN

Transposable elements (TEs) are mobile genetic materials that constitute a large fraction of plant genomes. Recent experimental evidences indicate that TEs can play key regulatory roles in controlling the expression of adjacent genes during plant development and stress responses. Nevertheless, information about the transcriptional activity of TEs and their impact on proximal genes during plant-nematode interaction remains largely unknown. Here, we identify of differentially expressed TEs and report their possible influence on the expression of nearby genes during the susceptible interaction between the beet cyst nematode Heterodera schachtii and Arabidopsis thaliana. Analysis of our RNA-seq data of H. schachtii-infected roots, and the corresponding non-infected controls, resulted in the identification of 99 and 93 differentially expressed TEs at 5 and 10 d post infection, respectively. More than 2-thirds of these TEs were activated, suggesting that H. schachtii infection induces TE activation to a much greater degree than repression. Remarkably, the majority of these TEs were located within 2 kb of protein-coding genes, many of these genes were previously found to change expression in the H. schachtii-induced feeding sites. Taken together, our analysis provides novel insight into a possible role of actively transcribed TEs in the regulation of gene transcription in the nematode feeding sites during H. schachtii parasitism of Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/parasitología , Nematodos/patogenicidad , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Animales , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Enfermedades de las Plantas/parasitología
6.
Plant Physiol ; 174(1): 405-420, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28298479

RESUMEN

A growing body of evidence indicates that epigenetic modifications can provide efficient, dynamic, and reversible cellular responses to a wide range of environmental stimuli. However, the significance of epigenetic modifications in plant-pathogen interactions remains largely unexplored. In this study, we provide a comprehensive analysis of epigenome changes during the compatible interaction between the beet cyst nematode Heterodera schachtii and Arabidopsis (Arabidopsis thaliana). Whole-genome bisulfite sequencing was conducted to assess the dynamic changes in the methylome of Arabidopsis roots in response to H. schachtii infection. H. schachtii induced widespread hypomethylation of protein-coding genes and transposable elements (TEs), preferentially those adjacent to protein-coding genes. The abundance of 24-nt siRNAs was associated with hypermethylation of TEs and gene promoters, with influence observed for methylation context and infection time points. mRNA sequencing revealed a significant enrichment for the differentially methylated genes among the differentially expressed genes, specifically those with functions corresponding to primary metabolic processes and responses to stimuli. The differentially methylated genes overlapped with more than one-fourth of the syncytium differentially expressed genes and are of functional significance. Together, our results provide intriguing insights into the potential regulatory role of differential DNA methylation in shaping the biological interplay between cyst nematodes and host plants.


Asunto(s)
Epigenómica , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Tylenchoidea/fisiología , Animales , Arabidopsis/genética , Arabidopsis/parasitología , Metilación de ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Secuenciación Completa del Genoma
7.
Plant Physiol ; 168(4): 1364-77, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26099268

RESUMEN

The soybean cyst nematode (SCN; Heterodera glycines) induces the formation of a multinucleated feeding site, or syncytium, whose etiology includes massive gene expression changes. Nevertheless, the genetic networks underlying gene expression control in the syncytium are poorly understood. DNA methylation is a critical epigenetic mark that plays a key role in regulating gene expression. To determine the extent to which DNA methylation is altered in soybean (Glycine max) roots during the susceptible interaction with SCN, we generated whole-genome cytosine methylation maps at single-nucleotide resolution. The methylome analysis revealed that SCN induces hypomethylation to a much higher extent than hypermethylation. We identified 2,465 differentially hypermethylated regions and 4,692 hypomethylated regions in the infected roots compared with the noninfected control. In addition, 703 and 1,346 unique genes were identified as overlapping with hyper- or hypomethylated regions, respectively. The differential methylation in genes apparently occurs independently of gene size and GC content but exhibits strong preference for recently duplicated paralogs. Furthermore, a set of 278 genes was identified as specifically syncytium differentially methylated genes. Of these, we found genes associated with epigenetic regulation, phytohormone signaling, cell wall architecture, signal transduction, and ubiquitination. This study provides, to our knowledge, new evidence that differential methylation is part of the regulatory mechanisms controlling gene expression changes in the nematode-induced syncytium.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Tylenchoidea/fisiología , Animales , Metilación de ADN , Expresión Génica , Perfilación de la Expresión Génica , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Glycine max/parasitología
8.
Plant Cell ; 27(3): 891-907, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25715285

RESUMEN

Plant-parasitic cyst nematodes synthesize and secrete effector proteins that are essential for parasitism. One such protein is the 10A07 effector from the sugar beet cyst nematode, Heterodera schachtii, which is exclusively expressed in the nematode dorsal gland cell during all nematode parasitic stages. Overexpression of H. schachtii 10A07 in Arabidopsis thaliana produced a hypersusceptible phenotype in response to H. schachtii infection along with developmental changes reminiscent of auxin effects. The 10A07 protein physically associates with a plant kinase and the IAA16 transcription factor in the cytoplasm and nucleus, respectively. The interacting plant kinase (IPK) phosphorylates 10A07 at Ser-144 and Ser-231 and mediates its trafficking from the cytoplasm to the nucleus. Translocation to the nucleus is phosphorylation dependent since substitution of Ser-144 and Ser-231 by alanine resulted in exclusive cytoplasmic accumulation of 10A07. IPK and IAA16 are highly upregulated in the nematode-induced syncytium (feeding cells), and deliberate manipulations of their expression significantly alter plant susceptibility to H. schachtii in an additive fashion. An inactive variant of IPK functioned antagonistically to the wild-type IPK and caused a dominant-negative phenotype of reduced plant susceptibility. Thus, exploitation of host processes to the advantage of the parasites is one mechanism by which cyst nematodes promote parasitism of host plants.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/parasitología , Núcleo Celular/metabolismo , Interacciones Huésped-Parásitos , Procesamiento Proteico-Postraduccional , Proteínas Protozoarias/metabolismo , Tylenchoidea/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Arabidopsis/metabolismo , Beta vulgaris/parasitología , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Señales de Localización Nuclear , Fosforilación , Fosfoserina/metabolismo , Enfermedades de las Plantas/parasitología , Proteínas Quinasas/metabolismo , Transporte de Proteínas , Regulación hacia Arriba
9.
BMC Plant Biol ; 14: 3, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24393201

RESUMEN

BACKGROUND: Genes duplicated by polyploidy (homoeologs) may be differentially expressed in plant tissues. Recent research using DNA microarrays and RNAseq data have described a cacophony of complex expression patterns during development of cotton fibers, petals, and leaves. Because of its highly canalized development, petal tissue has been used as a model tissue for gene expression in cotton. Recent advances in cotton genome annotation and assembly now permit an enhanced analysis of duplicate gene deployment in petals from allopolyploid cotton. RESULTS: Homoeologous gene expression levels were quantified in diploid and tetraploid flower petals of Gossypium using the Gossypium raimondii genome sequence as a reference. In the polyploid, most homoeologous genes were expressed at equal levels, though a subset had an expression bias of AT and DT copies. The direction of gene expression bias was conserved in natural and recent polyploids of cotton. Conservation of direction of bias and additional comparisons between the diploids and tetraploids suggested different regulation mechanisms of gene expression. We described three phases in the evolution of cotton genomes that contribute to gene expression in the polyploid nucleus. CONCLUSIONS: Compared to previous studies, a surprising level of expression homeostasis was observed in the expression patterns of polyploid genomes. Conserved expression bias in polyploid petals may have resulted from cis-acting modifications that occurred prior to polyploidization. Some duplicated genes were intriguing exceptions to general trends. Mechanisms of gene regulation for these and other genes in the cotton genome warrants further investigation.


Asunto(s)
Gossypium/genética , Poliploidía , Transcriptoma/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA