Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 246: 116210, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38788624

RESUMEN

Arginase is an enzyme responsible for converting arginine, a semi-essential amino acid, to ornithine and urea. Arginine depletion suppresses immunity via multiple mechanisms including inhibition of T-cell and NK cell proliferation and activity. Arginase inhibition is therefore an attractive mechanism to potentially reverse immune suppression and thus has been explored as a therapy for oncology and respiratory indications. Small molecules targeting arginase present significant bioanalytical challenges for in vitro and in vivo characterization as inhibitors of arginase are typically hydrophilic in nature. The resulting low or negative LogD characteristics are incompatible with common analytical methods such as RP-ESI-MS/MS. Accordingly, a sensitive, high-throughput bioanalytical method was developed by incorporating benzoyl chloride derivatization to increase the hydrophobic characteristics of these polar analytes. Samples were separated by reversed phase chromatography on a Waters XBridge BEH C18 3.5 µm, 30 × 3 mm column using gradient elution. The mass spec was operated in positive mode using electrospray ionization. The m/z 434.1→176.1, 439.4→181.2, 334.9→150.0 and 339.9→150.0 for AZD0011, AZD0011 IS, AZD0011-PL and AZD0011-PL IS respectively were used for quantitation. The linear calibration range of the assay was 1.00-10,000 ng/mL with QC values of 5, 50 and 500 ng/mL. The qualified method presented herein exhibits a novel, robust analytical performance and was successfully applied to evaluate the in vivo ADME properties of boronic acid-based arginase inhibitor prodrug AZD0011 and its active payload AZD0011-PL.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38532525

RESUMEN

Trastuzumab deruxtecan (T-DXd; DS-8201; ENHERTU®) is a human epithelial growth factor receptor 2 (HER2)-directed antibody drug conjugate (ADC) with demonstrated antitumor activity against a range of tumor types. Aiming to understand the relationship between antigen expression and downstream efficacy outcomes, T-DXd was administered in tumor-bearing mice carrying NCI-N87, Capan-1, JIMT-1, and MDA-MB-468 xenografts, characterized by varying HER2 levels. Plasma pharmacokinetics (PK) of total antibody, T-DXd, and released DXd and tumor concentrations of released DXd were evaluated, in addition to monitoring γΗ2AX and pRAD50 pharmacodynamic (PD) response. A positive relationship was observed between released DXd concentrations in tumor and HER2 expression, with NCI-N87 xenografts characterized by the highest exposures compared to the remaining cell lines. γΗ2AX and pRAD50 demonstrated a sustained increase over several days occurring with a time delay relative to tumoral-released DXd concentrations. In vitro investigations of cell-based DXd disposition facilitated the characterization of DXd kinetics across tumor cells. These outputs were incorporated into a mechanistic mathematical model, utilized to describe PK/PD trends. The model captured plasma PK across dosing arms as well as tumor PK in NCI-N87, Capan-1, and MDA-MB-468 models; tumor concentrations in JIMT-1 xenografts required additional parameter adjustments reflective of complex receptor dynamics. γΗ2AX longitudinal trends were well characterized via a unified PD model implemented across xenografts demonstrating the robustness of measured PD trends. This work supports the application of a mechanistic model as a quantitative tool, reliably projecting tumor payload concentrations upon T-DXd administration, as the first step towards preclinical-to-clinical translation.

3.
Drug Metab Dispos ; 51(12): 1547-1550, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37775331

RESUMEN

Drug-metabolizing enzymes and transporters (DMETs) are key regulators of the pharmacokinetics, efficacy, and toxicity of therapeutics. Over the past two decades, significant advancements in in vitro methodologies, targeted proteomics, in vitro to in vivo extrapolation methods, and integrated computational approaches such as physiologically based pharmacokinetic modeling have unequivocally contributed to improving our ability to quantitatively predict the role of DMETs in absorption, distribution, metabolism, and excretion and drug-drug interactions. However, the paucity of data regarding alterations in DMET activity in specific populations such as pregnant individuals, lactation, pediatrics, geriatrics, organ impairment, and disease states such as, cancer, kidney, and liver diseases and inflammation has restricted our ability to realize the full potential of these recent advancements. We envision that a series of carefully curated articles in a special supplementary issue of Drug Metabolism and Disposition will summarize the latest progress in in silico, in vitro, and in vivo approaches to characterize alteration in DMET activity and quantitatively predict drug disposition in specific populations. In addition, the supplementary issue will underscore the current scientific knowledge gaps that present formidable barriers to fully understand the clinical implications of altered DMET activity in specific populations and highlight opportunities for multistakeholder collaboration to advance our collective understanding of this rapidly emerging area. SIGNIFICANCE STATEMENT: This commentary highlights current knowledge and identifies gaps and key challenges in understanding the role of drug-metabolizing enzymes and transporters (DMETs) in drug disposition in specific populations. With this commentary for the special issue in Drug Metabolism and Disposition, the authors intend to increase interest and invite potential contributors whose research is focused or has aided in expanding the understanding around the role and impact of DMETs in drug disposition in specific populations.


Asunto(s)
Hepatopatías , Proteínas de Transporte de Membrana , Embarazo , Femenino , Humanos , Niño , Proteínas de Transporte de Membrana/metabolismo , Interacciones Farmacológicas , Inflamación , Tasa de Depuración Metabólica
4.
Xenobiotica ; 52(8): 770-785, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36314242

RESUMEN

 The therapeutic concept of antibody drug conjugates (ADCs) is to selectively target tumour cells with small molecule cytotoxic drugs to maximise cell kill benefit and minimise healthy tissue toxicity.An ADC generally consists of an antibody that targets a protein on the surface of tumour cells chemically linked to a warhead small molecule cytotoxic drug.To deliver the warhead to the tumour cell, the antibody must bind to the target protein and in general be internalised into the cell. Following internalisation, the cytotoxic agent can be released in the endosomal or lysosomal compartment (via different mechanisms). Diffusion or transport out of the endosome or lysosome allows the cytotoxic drug to express its cell-killing pharmacology. Alternatively, some ADCs (e.g. EDB-ADCs) rely on extracellular cleavage releasing membrane permeable warheads.One potentially important aspect of the ADC mechanism is the 'bystander effect' whereby the cytotoxic drug released in the targeted cell can diffuse out of that cell and into other (non-target expressing) tumour cells to exert its cytotoxic effect. This is important as solid tumours tend to be heterogeneous and not all cells in a tumour will express the targeted protein.The combination of large and small molecule aspects in an ADC poses significant challenges to the disposition scientist in describing the ADME properties of the entire molecule.This article will review the ADC landscape and the ADME properties of successful ADCs, with the aim of outlining best practice and providing a perspective of how the field can further facilitate the discovery and development of these important therapeutic modalities.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Antineoplásicos/farmacocinética , Inmunoconjugados/farmacocinética , Neoplasias/tratamiento farmacológico
5.
Clin Transl Sci ; 15(6): 1532-1543, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460165

RESUMEN

Trazpiroben is a dopamine D2 /D3 receptor antagonist under development for the treatment of gastroparesis. This phase I, open-label, randomized, two-way crossover study (NCT04121078) evaluated the effect of single-dose intravenous rifampin, a potent inhibitor of the organic anion transporting polypeptides (OATPs) 1B1 and 1B3, on the pharmacokinetics and safety of trazpiroben in healthy adults. The utility of coproporphyrin (CP) I and CPIII as biomarkers of OATP inhibition was also assessed. Overall, 12 participants were enrolled and randomized (1:1) into one of two treatment sequences (AB and BA). Participants received either a single oral dose of trazpiroben 25 mg (treatment A) or a single oral dose of trazpiroben 25 mg immediately after a single 30-min intravenous infusion of rifampin 600 mg (treatment B). After a washout period of at least 7 days, participants received the other treatment. Geometric mean area under the curve from time 0 extrapolated to infinity (AUC∞ ) and maximum serum concentration (Cmax ) of plasma trazpiroben were higher in participants receiving treatment B than those receiving treatment A (AUC∞ , 168.5 vs. 32.68 ng*h/ml; Cmax , 89.62 vs. 14.37 ng/ml); corresponding geometric mean ratios (90% confidence interval) showed 5.16 (4.25-6.25) and 6.24 (4.62-8.42)-fold increases in these parameters, respectively. In this study, trazpiroben was confirmed as a substrate of OATP1B1/1B3, and therefore co-administration of trazpiroben with moderate to strong inhibitors of OATP1B1/1B3 is not recommended. This is also the first assessment of the utility of CPI and CPIII as endogenous biomarkers of OATP1B1/1B3 inhibition after a single intravenous dose of rifampin.


Asunto(s)
Transportadores de Anión Orgánico , Rifampin , Adulto , Biomarcadores , Estudios Cruzados , Interacciones Farmacológicas , Humanos
6.
Drug Metab Dispos ; 50(2): 114-127, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34789487

RESUMEN

Inactivation of Cytochrome P450 (CYP450) enzymes can lead to significant increases in exposure of comedicants. The majority of reported in vitro to in vivo extrapolation (IVIVE) data have historically focused on CYP3A, leaving the assessment of other CYP isoforms insubstantial. To this end, the utility of human hepatocytes (HHEP) and human liver microsomes (HLM) to predict clinically relevant drug-drug interactions was investigated with a focus on CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6. Evaluation of IVIVE for CYP2B6 was limited to only weak inhibition. A search of the University of Washington Drug-Drug Interaction Database was conducted to identify a clinically relevant weak, moderate, and strong inhibitor for selective substrates of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and CYP2D6, resulting in 18 inhibitors for in vitro characterization against 119 clinical interaction studies. Pooled human hepatocytes and HLM were preincubated with increasing concentrations of inhibitors for designated timepoints. Time dependent inhibition was detected in HLM for four moderate/strong inhibitors, suggesting that some optimization of incubation conditions (i.e., lower protein concentrations) is needed to capture weak inhibition. Clinical risk assessment was conducted by incorporating the in vitro derived kinetic parameters maximal rate of enzyme inactivation (min-1) (kinact) and concentration of inhibitor resulting in 50% of the maximum enzyme inactivation (KI) into static equations recommended by regulatory authorities. Significant overprediction was observed when applying the basic models recommended by regulatory agencies. Mechanistic static models, which consider the fraction of metabolism through the impacted enzyme, using the unbound hepatic inlet concentration lead to the best overall prediction accuracy with 92% and 85% of data from HHEPs and HLM, respectively, within twofold of the observed value. SIGNIFICANCE STATEMENT: Coupling time-dependent inactivation parameters derived from pooled human hepatocytes and human liver microsomes (HLM) with a mechanistic static model provides an easy and quantitatively accurate means to determine clinical drug-drug interaction risk from in vitro data. Optimization is needed to evaluate time-dependent inhibition (TDI) for weak and moderate inhibitors using HLM. Recommendations are made with respect to input parameters for in vitro to in vivo extrapolation (IVIVE) of TDI with non-CYP3A enzymes using available data from HLM and human hepatocytes.


Asunto(s)
Citocromo P-450 CYP2D6 , Microsomas Hepáticos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6/metabolismo , Hepatocitos/metabolismo , Humanos , Microsomas Hepáticos/metabolismo
7.
Xenobiotica ; 51(6): 668-679, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33879032

RESUMEN

Trazpiroben (TAK-906), a peripherally selective dopamine D2/D3 receptor antagonist, is being developed for the treatment of patients with gastroparesis. The potential of trazpiroben to act as a perpetrator or a victim for cytochrome P450 (CYP)- or transporter- mediated drug-drug interactions (DDIs) was evaluated following the latest regulatory guidelines.In vitro studies revealed that trazpiroben is metabolised mainly through a non-CYP pathway (56.7%) by multiple cytosolic, NADPH-dependent reductase, such as aldo-keto reductase and short-chain dehydrogenase/reductase including carbonyl reductases. Remaining metabolism occurs through CYP3A4 and CYP2C8 (43.3%). Trazpiroben is neither an inhibitor nor an inducer of major CYP enzymes at a clinically relevant dose. It is a substrate of P-glycoprotein (P-gp) and organic anion transporting polypeptide (OATP) 1B1/1B3, but is not an inhibitor of transporters listed in the DDI guidelines at a clinically relevant dose. This is consistent with findings from CYP3A and P-gp-based clinical assessment showing no substantial change (≤2-fold) in trazpiroben exposure when co-administered with itraconazole.Collectively, trazpiroben has low potential of enzyme-mediated DDIs and is unlikely to act as a perpetrator of transporter-mediated DDIs but there may be a potential to act as a victim of OATP1B1/1B3 DDI that will be evaluated clinically.


Asunto(s)
Gastroparesia , Transportadores de Anión Orgánico , Preparaciones Farmacéuticas , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Humanos , Proteínas de Transporte de Membrana
8.
Drug Metab Dispos ; 43(9): 1307-15, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26076693

RESUMEN

Accurate determination of rates of de novo synthesis and degradation of cytochrome P450s (P450s) has been challenging. There is a high degree of variability in the multiple published values of turnover for specific P450s that is likely exacerbated by differences in methodologies. For CYP3A4, reported half-life values range from 10 to 140 hours. An accurate value for kdeg has been identified as a major limitation for prediction of drug interactions involving mechanism-based inhibition and/or induction. Estimation of P450 half-life from in vitro test systems, such as human hepatocytes, is complicated by differential decreased enzyme function over culture time, attenuation of the impact of enzyme loss through inclusion of glucocorticoids in media, and viability limitations over long-term culture times. HepatoPac overcomes some of these challenges by providing extended stability of enzymes (2.5 weeks in our hands). As such it is a unique tool for studying rates of enzyme degradation achieved through modulation of enzyme levels. CYP3A4 mRNA levels were rapidly depleted by >90% using either small interfering RNA or addition of interleukin-6, which allowed an estimation of the degradation rate constant for CYP3A protein over an incubation time of 96 hours. The degradation rate constant of 0.0240 ± 0.005 hour(-1) was reproducible in hepatocytes from five different human donors. These donors also reflected the overall population with respect to CYP3A5 genotype. This methodology can be applied to additional enzymes and may provide a more accurate in vitro derived kdeg value for predicting clinical drug-drug interaction outcomes.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Hepatocitos/metabolismo , ARN Mensajero/metabolismo , Adulto , Células Cultivadas , Estabilidad de Enzimas , Femenino , Semivida , Hepatocitos/enzimología , Humanos , Interleucina-6/farmacología , Cinética , Masculino , Persona de Mediana Edad , ARN Interferente Pequeño/administración & dosificación , Adulto Joven
9.
Drug Metab Dispos ; 42(3): 394-406, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24366904

RESUMEN

An increased appreciation of the importance of transporter and enzyme interplay in drug clearance and a desire to delineate these mechanisms necessitates the utilization of models that contain a full complement of enzymes and transporters at physiologically relevant activities. Additionally, the development of drugs with longer half-lives requires in vitro systems with extended incubation times that allow characterization of metabolic pathways for low-clearance drugs. A recently developed coculture hepatocyte model, HepatoPac, has been applied to meet these challenges. Faldaprevir is a drug in late-stage development for the treatment of hepatitis C. Faldaprevir is a low-clearance drug with the somewhat unique characteristic of being slowly metabolized, producing two abundant hydroxylated metabolites (M2a and M2b) in feces (∼40% of the dose) without exhibiting significant levels of circulating metabolites in humans. The human HepatoPac model was investigated to characterize the metabolism and transport of faldaprevir. In human HepatoPac cultures, M2a and M2b were the predominant metabolites formed, with extents of formation comparable to in vivo. Direct glucuronidation of faldaprevir was shown to be a minor metabolic pathway. HepatoPac studies also demonstrated that faldaprevir is concentrated in liver with active uptake by multiple transporters (including OATP1B1 and Na(+)-dependent transporters). Overall, human HepatoPac cultures provided valuable insights into the metabolism and disposition of faldaprevir in humans and demonstrated the importance of enzyme and transporter interplay in the clearance of the drug.


Asunto(s)
Antivirales/metabolismo , Hepatocitos/efectos de los fármacos , Hígado/metabolismo , Oligopéptidos/metabolismo , Tiazoles/metabolismo , Ácidos Aminoisobutíricos , Transporte Biológico , Biotransformación , Células Cultivadas , Técnicas de Cocultivo , Criopreservación , Medios de Cultivo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Femenino , Fibroblastos/citología , Glucurónidos/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Cinética , Leucina/análogos & derivados , Transportador 1 de Anión Orgánico Específico del Hígado , Tasa de Depuración Metabólica , Estructura Molecular , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Prolina/análogos & derivados , Quinolinas , Sodio/metabolismo
10.
Drug Metab Dispos ; 42(3): 384-93, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24346834

RESUMEN

Faldaprevir is a hepatitis C virus protease inhibitor that effectively reduces viral load in patients. Since faldaprevir exhibits slow metabolism in vitro and low clearance in vivo, metabolism was expected to be a minor clearance pathway. The human [(14)C] absorption, distribution, metabolism, and excretion study revealed that two monohydroxylated metabolites (M2a and M2b) were the most abundant excretory metabolites in feces, constituting 41% of the total administered dose. To deconvolute the formation and disposition of M2a and M2b in humans and determine why the minor change in structure [the addition of 16 atomic mass units (amu)] produced chemical entities that were excreted and were not present in the circulation, multiple in vitro test systems were used. The results from these in vitro studies clarified the formation and clearance of M2a and M2b. Faldaprevir is metabolized primarily in the liver by CYP3A4/5 to form M2a and M2b, which are also substrates of efflux transporters (P-glycoprotein and breast cancer resistance protein). The role of transporters is considered important for M2a and M2b as they demonstrate low permeability. It is proposed that both metabolites are efficiently excreted via bile into feces and do not enter the systemic circulation to an appreciable extent. If these metabolites permeate to blood, they can be readily taken up into hepatocytes from the circulation by uptake transporters (likely organic anion transporting polypeptides). These results highlight the critical role of drug-metabolizing enzymes and multiple transporters in the process of the formation and clearance of faldaprevir metabolites. Faldaprevir metabolism also provides an interesting case study for metabolites that are exclusively excreted in feces but are of clinical relevance.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antivirales , Sistema Enzimático del Citocromo P-450/metabolismo , Heces/enzimología , Oligopéptidos , Tiazoles , Ácidos Aminoisobutíricos , Antivirales/sangre , Antivirales/metabolismo , Células CACO-2 , Permeabilidad de la Membrana Celular , Estabilidad de Medicamentos , Almacenaje de Medicamentos , Heces/química , Femenino , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro , Absorción Intestinal , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Intestinos/enzimología , Cinética , Leucina/análogos & derivados , Masculino , Tasa de Depuración Metabólica , Microsomas/efectos de los fármacos , Microsomas/enzimología , Microsomas/metabolismo , Oligopéptidos/sangre , Oligopéptidos/metabolismo , Prolina/análogos & derivados , Unión Proteica , Quinolinas , Tiazoles/sangre , Tiazoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA