Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
ACS Appl Bio Mater ; 7(5): 3283-3294, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38727030

RESUMEN

Medical implants are constantly facing the risk of bacterial infections, especially infections caused by multidrug resistant bacteria. To mitigate this problem, gold nanoparticles with alkyl bromide moieties (Au NPs-Br) on the surfaces were prepared. Xenon light irradiation triggered the plasmon effect of Au NPs-Br to induce free radical graft polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA), leading to the formation of poly(DMAEMA) brush-grafted Au NPs (Au NPs-g-PDM). The Au NPs-g-PDM nanocomposites were conjugated with phytic acid (PA) via electrostatic interaction and van der Waals interaction. The as-formed aggregates were deposited on the titanium (Ti) substrates to form the PA/Au NPs-g-PDM (PAP) hybrid coatings through surface adherence of PA and the gravitational effect. Synergistic bactericidal effects of contact-killing caused by the cationic PDM brushes, and local heating generated by the Au NPs under near-infrared irradiation, conferred strong antibacterial effects on the PAP-deposited Ti (Ti-PAP) substrates. The synergistic bactericidal effects reduced the threshold temperature required for the photothermal sterilization, which in turn minimized the secondary damage to the implant site. The Ti-PAP substrates exhibited 97.34% and 99.97% antibacterial and antiadhesive efficacy, respectively, against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), compared to the control under in vitro antimicrobial assays. Furthermore, the as-constructed Ti-PAP surface exhibited a 99.42% reduction in the inoculated S. aureus under in vivo assays. In addition, the PAP coatings exhibited good biocompatibility in the hemolysis and cytotoxicity assays as well as in the subcutaneous implantation of rats.


Asunto(s)
Antibacterianos , Escherichia coli , Oro , Ensayo de Materiales , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Ácido Fítico , Staphylococcus aureus , Oro/química , Oro/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Nanopartículas del Metal/química , Ácido Fítico/química , Ácido Fítico/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Animales , Propiedades de Superficie , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Cationes/química , Cationes/farmacología , Polímeros/química , Polímeros/farmacología , Titanio/química , Titanio/farmacología
2.
Theranostics ; 14(6): 2573-2588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646638

RESUMEN

Background: Hypofractionated radiotherapy (hRT) can induce a T cell-mediated abscopal effect on non-irradiated tumor lesions, especially in combination with immune checkpoint blockade (ICB). However, clinically, this effect is still rare, and ICB-mediated adverse events are common. Lenalidomide (lena) is an anti-angiogenic and immunomodulatory drug used in the treatment of hematologic malignancies. We here investigated in solid tumor models whether lena can enhance the abscopal effect in double combination with hRT. Methods: In two syngeneic bilateral tumor models (B16-CD133 melanoma and MC38 colon carcinoma), the primary tumor was treated with hRT. Lena was given daily for 3 weeks. Besides tumor size and survival, the dependence of the antitumor effects on CD8+ cells, type-I IFN signaling, and T cell costimulation was determined with depleting or blocking antibodies. Tumor-specific CD8+ T cells were quantified, and their differentiation and effector status were characterized by multicolor flow cytometry using MHC-I tetramers and various antibodies. In addition, dendritic cell (DC)-mediated tumor antigen cross-presentation in vitro and directly ex vivo and the composition of tumor-associated vascular endothelial cells were investigated. Results: In both tumor models, the hRT/lena double combination induced a significant abscopal effect. Control of the non-irradiated secondary tumor and survival were considerably better than with the respective monotherapies. The abscopal effect was strongly dependent on CD8+ cells and associated with an increase in tumor-specific CD8+ T cells in the non-irradiated tumor and its draining lymph nodes. Additionally, we found more tumor-specific T cells with a stem-like (TCF1+ TIM3- PD1+) and a transitory (TCF1- TIM3+ CD101- PD1+) exhausted phenotype and more expressing effector molecules such as GzmB, IFNγ, and TNFα. Moreover, in the non-irradiated tumor, hRT/lena treatment also increased DCs cross-presenting a tumor model antigen. Blocking type-I IFN signaling, which is essential for cross-presentation, completely abrogated the abscopal effect. A gene expression analysis of bone marrow-derived DCs revealed that lena augmented the expression of IFN response genes and genes associated with differentiation, maturation (including CD70, CD83, and CD86), migration to lymph nodes, and T cell activation. Flow cytometry confirmed an increase in CD70+ CD83+ CD86+ DCs in both irradiated and abscopal tumors. Moreover, the hRT/lena-induced abscopal effect was diminished when these costimulatory molecules were blocked simultaneously using antibodies. In line with the enhanced infiltration by DCs and tumor-specific CD8+ T cells, including more stem-like cells, hRT/lena also increased tumor-associated high endothelial cells (TA-HECs) in the non-irradiated tumor. Conclusions: We demonstrate that lena can augment the hRT-induced abscopal effect in mouse solid tumor models in a CD8 T cell- and IFN-I-dependent manner, correlating with enhanced anti-tumor CD8 T cell immunity, DC cross-presentation, and TA-HEC numbers. Our findings may be helpful for the planning of clinical trials in (oligo)metastatic patients.


Asunto(s)
Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Lenalidomida , Hipofraccionamiento de la Dosis de Radiación , Animales , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Ratones Endogámicos C57BL , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Línea Celular Tumoral , Terapia Combinada/métodos , Femenino , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Melanoma Experimental/radioterapia , Melanoma Experimental/terapia , Neoplasias del Colon/inmunología , Neoplasias del Colon/radioterapia , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/terapia
3.
Langmuir ; 40(12): 6562-6570, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38470825

RESUMEN

Cross-linking with functional molecular species in polymeric carbon nitride (PCN) could offer a positive strategy that tunes its molecular structure with excellent conductivity to improve photocatalytic activity. Herein, the benzene ring-cross-linked photocatalyst is obtained via the polymerization of urea, melamine, and trimesic acid. Benzene ring-cross-linked PCN narrows the band gap and augments the push-pull effect of carriers, thus enhancing visible light harvesting and transfer easiness of photogenerated electron/hole pairs. Notably, the amount of trimesic acid was optimized during the benzene ring-cross-linked photocatalyst preparation (marked as 01T/A-CN, 02T/A-CN, and 03T/A-CN). Among them, 02T/A-CN photocatalyst achieved an excellent hydrogen production rate of 1931 µmol/h·g, which is higher than that of CN under visible light and beyond most reported. Theoretical calculations further confirmed that the introduction of benzene ring significantly reduces the band gap of PCN, bringing the delocalized electron, a longer intramolecular electron transition distance, and molecular bending. All those factors made benzene ring-cross-linked PCN with improved photocatalytic hydrogen production under visible light irradiation.

4.
J Immunother Cancer ; 11(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37640480

RESUMEN

BACKGROUND: Localized radiotherapy (RT) can cause a T cell-mediated abscopal effect on non-irradiated tumor lesions, especially in combination with immune checkpoint blockade. However, this effect is still clinically rare and improvements are highly desirable. We investigated whether triple combination with a low dose of clinically approved liposomal doxorubicin (Doxil) could augment abscopal responses compared with RT/αPD-1 and Doxil/αPD-1. We also investigated whether the enhanced abscopal responses depended on the mitochondrial DNA (mtDNA)/cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)/IFN-I pathway. MATERIALS/METHODS: We used Doxil in combination with RT and αPD-1 in two tumor models (B16-CD133 melanoma and MC38 colon carcinoma) with mice bearing two tumors, only one of which was irradiated. Mechanistic studies on the role of the mtDNA/cGAS/STING/IFN-I axis were performed using inhibitors and knockout cells in vitro as well as in mice. RESULTS: Addition of a single low dose of Doxil to RT and αPD-1 strongly enhanced the RT/αPD-1-induced abscopal effect in both models. Complete cures of non-irradiated tumors were mainly observed in triple-treated mice. Triple therapy induced more cross-presenting dendritic cells (DCs) and more tumor-specific CD8+ T cells than RT/αPD-1 and Doxil/αPD-1, particularly in non-irradiated tumors. Coincubation of Doxil-treated and/or RT-treated tumor cells with DCs enhanced DC antigen cross-presentation which is crucial for inducing CD8+ T cells. CD8+ T cell depletion or implantation of cGAS-deficient or STING-deficient tumor cells abolished the abscopal effect. Doxorubicin-induced/Doxil-induced IFNß1 markedly depended on the cGAS/STING pathway. Doxorubicin-treated/Doxil-treated tumor cells depleted of mtDNA secreted less IFNß1, of the related T cell-recruiting chemokine CXCL10, and ATP; coincubation with mtDNA-depleted tumor cells strongly reduced IFNß1 secretion by DCs. Implantation of mtDNA-depleted tumor cells, particularly at the non-irradiated/abscopal site, substantially diminished the Doxil-enhanced abscopal effect and tumor infiltration by tumor-specific CD8+ T cells. CONCLUSIONS: These data show that single low-dose Doxil can substantially enhance the RT/αPD-1-induced abscopal effect, with a strong increase in cross-presenting DCs and CD8+ tumor-specific T cells particularly in abscopal tumors compared with RT/αPD-1 and Doxil/αPD-1. Moreover, they indicate that the mtDNA/cGAS/STING/IFN-I axis is important for the immunogenic/immunomodulatory doxorubicin effects. Our findings may be helpful for the planning of clinical radiochemoimmunotherapy trials in (oligo)metastatic patients.


Asunto(s)
Linfocitos T CD8-positivos , ADN Mitocondrial , Animales , Ratones , ADN Mitocondrial/genética , Mitocondrias , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico
5.
Clin Cancer Res ; 29(17): 3372-3383, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289194

RESUMEN

PURPOSE: We explored the clinical and genomic characteristics of hormone receptor-positive (HR+), HER2-negative (HER2-) metastatic breast cancer (MBC) after progression on cyclin-dependent kinase 4 and 6 inhibitors (CDK4 and 6i) ± endocrine therapy (ET) to understand potential resistance mechanisms that may aid in identifying treatment options. EXPERIMENTAL DESIGN: Patients in the United States with HR+, HER2- MBC had tumor biopsies collected from a metastatic site during routine care following progression on a CDK4 and 6i ± ET (CohortPost) or prior to initiating CDK4 and 6i treatment (CohortPre) and analyzed using a targeted mutation panel and RNA-sequencing. Clinical and genomic characteristics were described. RESULTS: The mean age at MBC diagnosis was 59 years in CohortPre (n = 133) and 56 years in CohortPost (n = 223); 14% and 45% of patients had prior chemotherapy/ET, and 35% and 26% had de novo stage IV MBC, respectively. The most common biopsy site was liver (CohortPre, 23%; CohortPost, 56%). CohortPost had significantly higher tumor mutational burden (TMB; median 3.16 vs. 1.67 Mut/Mb, P < 0.0001), ESR1 alteration frequency (mutations: 37% vs. 10%, FDR < 0.0001; fusions: 9% vs. 2%, P = 0.0176), and higher copy-number amplification of genes on chr12q15, including MDM2, FRS2, and YEATS4 versus patients in the CohortPre group. In addition, CDK4 copy-number gain on chr12q13 was significantly higher in CohortPost versus CohortPre (27% vs. 11%, P = 0.0005). CONCLUSIONS: Distinct mechanisms potentially associated with resistance to CDK4 and 6i ± ET, including alterations in ESR1 and amplification of chr12q15 and CDK4 copy-number gain, were identified.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Quinasa 4 Dependiente de la Ciclina/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Genes cdc , Genómica
6.
Cancer Res ; 83(8): 1345-1360, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37057595

RESUMEN

Study of genomic aberrations leading to immortalization of epithelial cells has been technically challenging due to the lack of isogenic models. To address this, we used healthy primary breast luminal epithelial cells of different genetic ancestry and their hTERT-immortalized counterparts to identify transcriptomic changes associated with immortalization. Elevated expression of TONSL (Tonsoku-like, DNA repair protein) was identified as one of the earliest events during immortalization. TONSL, which is located on chromosome 8q24.3, was found to be amplified in approximately 20% of breast cancers. TONSL alone immortalized primary breast epithelial cells and increased telomerase activity, but overexpression was insufficient for neoplastic transformation. However, TONSL-immortalized primary cells overexpressing defined oncogenes generated estrogen receptor-positive adenocarcinomas in mice. Analysis of a breast tumor microarray with approximately 600 tumors revealed poor overall and progression-free survival of patients with TONSL-overexpressing tumors. TONSL increased chromatin accessibility to pro-oncogenic transcription factors, including NF-κB and limited access to the tumor-suppressor p53. TONSL overexpression resulted in significant changes in the expression of genes associated with DNA repair hubs, including upregulation of several genes in the homologous recombination (HR) and Fanconi anemia pathways. Consistent with these results, TONSL-overexpressing primary cells exhibited upregulated DNA repair via HR. Moreover, TONSL was essential for growth of TONSL-amplified breast cancer cell lines in vivo, and these cells were sensitive to TONSL-FACT complex inhibitor CBL0137. Together, these findings identify TONSL as a regulator of epithelial cell immortalization to facilitate cancer initiation and as a target for breast cancer therapy. SIGNIFICANCE: The chr.8q24.3 amplicon-resident gene TONSL is upregulated during the initial steps of tumorigenesis to support neoplastic transformation by increasing DNA repair and represents a potential therapeutic target for treating breast cancer.


Asunto(s)
FN-kappa B , Oncogenes , Animales , Ratones , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Oncogenes/genética , Factores de Transcripción/genética
7.
Int J Colorectal Dis ; 37(12): 2481-2489, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36334109

RESUMEN

OBJECTIVE: Indications for adjuvant chemotherapy in stage IIA (T3N0M0) colon cancer are still controversial. The purpose of this study was to evaluate the prognostic value of elevated carcinoembryonic antigen (CEA) levels for cancer-specific survival (CSS) and overall survival (OS) in patients with stage IIA colon cancer. We aimed to examine the impact of adjuvant chemotherapy on OS in stage IIA colon cancer patients with elevated CEA levels. METHODS: Patients with stage IIA colon cancer (N = 3477) diagnosed between 2010 and 2015 were identified using the Surveillance, Epidemiology, and End Results (SEER) database. Kaplan-Meier and Cox proportional hazards regression models were used to assess the prognostic effect of CEA on CSS and OS. RESULTS: Cox regression analysis demonstrated that CEA was an independent risk factor for CSS and OS in patients with stage IIA colon cancer (CSS: HR = 2.001, 95% CI 1.603-2.499, P < 0.001; OS: HR = 1.530, 95% CI 1.335-1.752, P < 0.001). In the subgroup with elevated CEA, patients received adjuvant chemotherapy had a better OS compared with those did not (χ2 = 10.585, p = 0.001). CONCLUSION: CEA was an independent risk factor for CSS and OS in patients with stage IIA colon cancer. Patients with stage IIA colon cancer with an elevated CEA level might benefit from adjuvant chemotherapy.


Asunto(s)
Antígeno Carcinoembrionario , Neoplasias del Colon , Humanos , Estadificación de Neoplasias , Neoplasias del Colon/patología , Quimioterapia Adyuvante , Pronóstico
8.
Front Oncol ; 12: 920762, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982969

RESUMEN

The gastrointestinal stromal tumors (GIST) are a rare gastrointestinal tract malignancy. The two primary mutation sites are found in KIT and platelet-derived growth factor receptor-α (PDGFR-α) genes. The current study reports on a point mutation within the exon 11 of KIT, named KIT p.V560E. Patient-derived organoids (PDOs) are potential 3D in vitro models of tissues that can be used to identify sensitivity toward specific targets in patients with tumors and allow for personalized medicine when drugs specific for newly identified genetic locus mutations are not yet available. This study describes a 68-year-old patient who complained of diffused abdominal pain and intermittent melena lasting more than 10 days. He has no other gastrointestinal abnormalities, prior abdominal surgery, or related family history. Surgery was conducted first to remove the lesions and ascertain the disease through histology and immunohistochemical stains of the mass. Immunohistochemistry revealed that the tumor was positive for CD117 and Dog-1. Based on the above findings, he was diagnosed with GISTs. Gene detection analysis and organoid culture were then performed to verify clinical decisions. KIT p.V560E and the reduced number of RB1 copies were identified as two obvious mutations, so the patient was administrated first-line treatment of imatinib 400 mg/d. However, progressive disease prompted us to switch to sunitinib, and his condition gradually improved. Meanwhile, organoid culture showed sensitivity to sunitinib and tolerance to imatinib with half-maximal inhibitory concentration (IC50) values of 0.89 and >20, respectively. In summary, to the best of our knowledge, this is the first time that the established organoid culture indicated that the GISTs organoid could identify the sensitivity to target therapies and facilitate individual-based treatment.

9.
Front Immunol ; 13: 908558, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844567

RESUMEN

Metastatic advanced gastric cancer, for which treatment strategies are extremely limited, has a poor prognosis. Complete remission is rare. Patients usually lose the opportunity of therapeutic surgery because the lesions cannot be completely removed, although it can greatly prolong their survival time. Palliative surgery usually suggests bad outcomes. In recent years, the immune checkpoint inhibitor (ICI) nivolumab has shown significant efficacy in the treatment of advanced gastric cancer. However, its applicable conditions and optimal withdrawal time remain controversial owing to its low response rate and high incidence of immune-related adverse events. Herein, we introduce a 66-year-old male patient with advanced gastric cancer with multiple liver metastases who underwent laparoscopic total gastrectomy for acute gastric bleeding. The patient received eight cycles of S-1 plus oxaliplatin (SOX) and switched to eight cycles of SOX plus nivolumab combined regimen in a stable state, later achieving complete remission. There was no recurrence for 32 months after the surgery. This is the first reported case of gastric cancer with multiple liver metastases with long-term complete remission with nivolumab treatment after palliative surgery. The potential mechanism of complete remission was discussed through clinical, genomic, and immune characteristics. The patient had a history of psoriasis and was positive for programmed death ligand 1 (PD-L1), and the interaction of TP53 mutation and HER-2 (-) gene may be associated with complete remission.


Asunto(s)
Neoplasias Hepáticas , Neoplasias Gástricas , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/cirugía , Masculino , Nivolumab/uso terapéutico , Oxaliplatino/uso terapéutico , Cuidados Paliativos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias Gástricas/cirugía
10.
Mol Ther Oncolytics ; 22: 565-573, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34553041

RESUMEN

Endostatin (ES, ENDO) has been reported to suppress the growth of tumors while inducing the proliferation of lung cancer stem cells (LCSCs), causing a poor prognosis for lung cancer. In this study, we aimed to clarify whether BRM270 can inhibit the proliferation of cancer stem cells (CSCs). Endostatin + BRM270 showed anti-tumor effects by reducing tumor volume and increasing survival. Administration of BRM270 reduced the number of aldehyde dehydrogenase-positive (ALDH+) cells and the level of ALDH1A1 expression in tumors by increasing the level of miR-128 while decreasing the levels of BMI-1, ABCC-5, E2F3, and c-MET. The luciferase activity of miR-128 promoter was increased by an increasing concentration of BRM270. In addition, BMI-1, ABCC-5, E2F3, and c-MET were identified as candidate targets of miR-128, and the overexpression of miR-128 significantly reduced mRNA/protein levels of BMI-1, ABCC-5, E2F3, and c-MET in A549 and H460 cells. Administration of BRM270 inhibited the expression of BMI-1, ABCC-5, E2F3, and c-MET in a dose-dependent manner. In this study, we showed for the first time that the combined administration of endostatin and BRM270 achieved anti-tumor effects while suppressing the proliferation of stem cells.

11.
IUBMB Life ; 73(2): 408-417, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33372396

RESUMEN

Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC), whether circular RNA (circRNA) is involved in this process remains unknown. In this study, we performed circRNA microarray profile and found an HBV-related circRNA, circ-ARL3 (hsa_circ_0092493). Stable knockdown of circ-ARL3 inhibited the proliferation and invasion of HBV+ HCC cells. High circ-ARL3 was positively correlated with malignant clinical features and poor prognosis. In terms of mechanism, HBx protein upregulated N6 -methyladenosine (m6 A) methyltransferases METTL3 expression, increasing the m6 A modification of circ-ARL3; then, m6 A reader YTHDC1 bound to m6 A-modified of circ-ARL3 and favored its reverse splicing and biogenesis. Furthermore, circ-ARL3 was able to sponge miR-1305, antagonizing the inhibitory effects of miR-1305 on a cohort of target oncogenes, thereby promoting HBV+ HCC progression. Importantly, depletion of circ-ARL3 significantly retarded HBV+ HCC cell growth in vivo, whereas this effect was evidently blocked after silencing of miR-1305. Collectively, our data suggest that circ-ARL3 is a critical regulator in HBV-related HCC, targeting the axis of circ-ARL3/miR-1305 may be a promising treatment for HBV+ HCC patients.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Adenosina/análogos & derivados , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Hepatitis B/complicaciones , MicroARNs/genética , ARN Circular/química , Adenosina/química , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Proliferación Celular , Femenino , Hepatitis B/virología , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , ARN Circular/genética , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Mol Psychiatry ; 26(4): 1142-1151, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31477794

RESUMEN

Genome-wide association studies (GWAS) of complex traits, such as alcohol use disorders (AUD), usually identify variants in non-coding regions and cannot by themselves distinguish whether the associated variants are functional or in linkage disequilibrium with the functional variants. Transcriptome studies can identify genes whose expression differs between alcoholics and controls. To test which variants associated with AUD may cause expression differences, we integrated data from deep RNA-seq and GWAS of four postmortem brain regions from 30 subjects with AUD and 30 controls to analyze allele-specific expression (ASE). We identified 88 genes with differential ASE in subjects with AUD compared to controls. Next, to test one potential mechanism contributing to the differential ASE, we analyzed single nucleotide polymorphisms (SNPs) in the 3' untranslated regions (3'UTR) of these genes. Of the 88 genes with differential ASE, 61 genes contained 437 SNPs in the 3'UTR with at least one heterozygote among the subjects studied. Using a modified PASSPORT-seq (parallel assessment of polymorphisms in miRNA target-sites by sequencing) assay, we identified 25 SNPs that affected RNA levels in a consistent manner in two neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Many of these SNPs are in binding sites of miRNAs and RNA-binding proteins, indicating that these SNPs are likely causal variants of AUD-associated differential ASE. In sum, we demonstrate that a combination of computational and experimental approaches provides a powerful strategy to uncover functionally relevant variants associated with the risk for AUD.


Asunto(s)
Alcoholismo , Estudio de Asociación del Genoma Completo , Regiones no Traducidas 3'/genética , Alcoholismo/genética , Alelos , Predisposición Genética a la Enfermedad/genética , Humanos , Polimorfismo de Nucleótido Simple/genética
13.
NPJ Breast Cancer ; 6: 50, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33083529

RESUMEN

Histologically normal tissue adjacent to the tumor can provide insight of the microenvironmental alterations surrounding the cancerous lesion and affecting the progression of the disease. However, little is known about the molecular changes governing cancer initiation in cancer-free breast tissue. Here, we employed laser microdissection and whole-transcriptome profiling of the breast epithelium prior to and post tumor diagnosis to identify the earliest alterations in breast carcinogenesis. Furthermore, a comprehensive analysis of the three tissue compartments (microdissected epithelium, stroma, and adipose tissue) was performed on the breast donated by either healthy subjects or women prior to the clinical manifestation of cancer (labeled "susceptible normal tissue"). Although both susceptible and healthy breast tissues appeared histologically normal, the susceptible breast epithelium displayed a significant upregulation of genes involved in fatty acid uptake/transport (CD36 and AQP7), lipolysis (LIPE), and lipid peroxidation (AKR1C1). Upregulation of lipid metabolism- and fatty acid transport-related genes was observed also in the microdissected susceptible stromal and adipose tissue compartments, respectively, when compared with the matched healthy controls. Moreover, inter-compartmental co-expression analysis showed increased epithelium-adipose tissue crosstalk in the susceptible breasts as compared with healthy controls. Interestingly, reductions in natural killer (NK)-related gene signature and CD45+/CD20+ cell staining were also observed in the stromal compartment of susceptible breasts. Our study yields new insights into the cancer initiation process in the breast. The data suggest that in the early phase of cancer development, metabolic activation of the breast, together with increased epithelium-adipose tissue crosstalk may create a favorable environment for final cell transformation, proliferation, and survival.

14.
Front Genet ; 11: 265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32273884

RESUMEN

Alternative splicing alterations can contribute to human disease. The ability of an RNA-binding protein to regulate alternative splicing outcomes can be modulated by a variety of genetic and epigenetic mechanisms. In this study, we use a computational framework to investigate the roles of certain genes, termed modulators, on changing RBPs' effect on splicing regulation. A total of 1,040,254 modulator-mediated RBP-splicing interactions were identified, including 137 RBPs, 4,309 splicing events and 2,905 modulator candidates from TCGA-KIRC RNA sequencing data. Modulators function categories were defined according to the correlation changes between RBPs expression and their targets splicing outcomes. QKI, as one of the RBPs influencing the most splicing events, attracted our attention in this study: 2,014 changing triplets were identified, including 1,101 modulators and 187 splicing events. Pathway enrichment analysis showed that QKI splicing targets were enriched in tight junction pathway, endocytosis and MAPK signaling pathways, all of which are highly associated with cancer development and progression. This is the first instance of a comprehensive study on how alternative splicing outcomes changes are associated with different expression level of certain proteins, even though they were regulated by the same RBP. Our work may provide a novel view on understanding alternative splicing mechanisms in kidney cancer.

15.
Oncotarget ; 11(3): 216-236, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-32076484

RESUMEN

The combined influence of oncogenic drivers, genomic instability, and/or DNA damage repair deficiencies increases replication stress in cancer. Cells with high replication stress rely on the upregulation of checkpoints like those governed by CHK1 for survival. Previous studies of the CHK1 inhibitor prexasertib demonstrated activity across multiple cancer types. Therefore, we sought to (1) identify markers of prexasertib sensitivity and (2) define the molecular mechanism(s) of intrinsic and acquired resistance using preclinical models representing multiple tumor types. Our findings indicate that while cyclin E dysregulation is a driving mechanism of prexasertib response, biomarkers associated with this aberration lack sufficient predictive power to render them clinically actionable for patient selection. Transcriptome analysis of a pan-cancer cell line panel and in vivo models revealed an association between expression of E2F target genes and prexasertib sensitivity and identified innate immunity genes associated with prexasertib resistance. Functional RNAi studies supported a causal role of replication fork components as modulators of prexasertib response. Mechanisms that protect cells from oncogene-induced replication stress may safeguard tumors from such stress induced by a CHK1 inhibitor, resulting in acquired drug resistance. Furthermore, resistance to prexasertib may be shaped by innate immunity.

16.
Cell Death Differ ; 27(8): 2344-2362, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32051546

RESUMEN

Rab5 is a master regulator for endosome biogenesis and transport while its in vivo physiological function remains elusive. Here, we find that Rab5a is upregulated in several in vivo and in vitro myogenesis models. By generating myogenic Rab5a-deficient mice, we uncover the essential roles of Rab5a in regulating skeletal muscle regeneration. We further reveal that Rab5a promotes myoblast differentiation and directly interacts with insulin receptor substrate 1 (IRS1), an essential scaffold protein for propagating IGF signaling. Rab5a interacts with IRS1 in a GTP-dependent manner and this interaction is enhanced upon IGF-1 activation and myogenic differentiation. We subsequently identify that the arginine 207 and 222 of IRS1 and tyrosine 82, 89, and 90 of Rab5a are the critical amino acid residues for mediating the association. Mechanistically, Rab5a modulates IRS1 activation by coordinating the association between IRS1 and the IGF receptor (IGFR) and regulating the intracellular membrane targeting of IRS1. Both myogenesis-induced and IGF-evoked AKT-mTOR signaling are dependent on Rab5a. Myogenic deletion of Rab5a also reduces the activation of AKT-mTOR signaling during skeletal muscle regeneration. Taken together, our study uncovers the physiological function of Rab5a in regulating muscle regeneration and delineates the novel role of Rab5a as a critical switch controlling AKT-mTOR signaling by activating IRS1.


Asunto(s)
Diferenciación Celular , Proteínas Sustrato del Receptor de Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Músculo Esquelético/fisiología , Mioblastos/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración/fisiología , Proteínas de Unión al GTP rab5/metabolismo , Animales , Línea Celular , Células HEK293 , Miembro Posterior/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Ratones Endogámicos C57BL , Desarrollo de Músculos/genética , Mioblastos/metabolismo , Unión Proteica , ARN Interferente Pequeño/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/genética , Proteínas de Unión al GTP rab5/genética
17.
Chemosphere ; 244: 125462, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31790992

RESUMEN

A series of Ag3PO4/g-C3N4 nanocomposites were synthesized by introducing various small amount of Ag3PO4 in g-C3N4 and subsequently employed for decomposing formaldehyde (HCHO) in continuous flow as photocatalysts. The results show that all the Ag3PO4/g-C3N4 nanocomposites could perform a very stable photoactivity for degrading continuously flowing gaseous formaldehyde for at least 600 h. Especially, the HCHO degradation rate reached 22.4% by using 1AP-CN, which was 2.63 times as fast as that of g-C3N4. Our results reveal that the photoinduced electrons in conduction band (CB) are trapped by O2 to yield ⋅O2-, while holes in valence band (VB) directly oxidize -OH and/or water to produce ·OH under visible light irradiation. As a consequence, HCHO is further oxidized to CO2 and H2O by as-generate active species.


Asunto(s)
Formaldehído/química , Procesos Fotoquímicos , Catálisis , Gases , Luz , Modelos Químicos , Nanocompuestos , Oxidación-Reducción , Plata
18.
Mol Cancer Ther ; 19(2): 325-336, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31744895

RESUMEN

The ERK pathway is critical in oncogenesis; aberrations in components of this pathway are common in approximately 30% of human cancers. ERK1/2 (ERK) regulates cell proliferation, differentiation, and survival and is the terminal node of the pathway. BRAF- and MEK-targeted therapies are effective in BRAF V600E/K metastatic melanoma and lung cancers; however, responses are short-lived due to emergence of resistance. Reactivation of ERK signaling is central to the mechanisms of acquired resistance. Therefore, ERK inhibition provides an opportunity to overcome resistance and leads to improved efficacy. In addition, KRAS-mutant cancers remain an unmet medical need in which ERK inhibitors may provide treatment options alone or in combination with other agents. Here, we report identification and activity of LY3214996, a potent, selective, ATP-competitive ERK inhibitor. LY3214996 treatment inhibited the pharmacodynamic biomarker, phospho-p90RSK1, in cells and tumors, and correlated with LY3214996 exposures and antitumor activities. In in vitro cell proliferation assays, sensitivity to LY3214996 correlated with ERK pathway aberrations. LY3214996 showed dose-dependent tumor growth inhibition and regression in xenograft models harboring ERK pathway alterations. Importantly, more than 50% target inhibition for up to 8 to 16 hours was sufficient for significant tumor growth inhibition as single agent in BRAF- and KRAS-mutant models. LY3214996 also exhibited synergistic combination benefit with a pan-RAF inhibitor in a KRAS-mutant colorectal cancer xenograft model. Furthermore, LY3214996 demonstrated antitumor activity in BRAF-mutant models with acquired resistance in vitro and in vivo. Based on these preclinical data, LY3214996 has advanced to an ongoing phase I clinical trial (NCT02857270).


Asunto(s)
Neoplasias/tratamiento farmacológico , Medicina de Precisión , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
19.
Ther Adv Respir Dis ; 13: 1753466619890538, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31771432

RESUMEN

Autophagy is a process of cell self-renewal that is dependent on the degradation of the cytoplasmic proteins or organelles of lysosomes. Many diseases, such as metabolic diseases, cancer, neurodegenerative diseases, and lung diseases, have been confirmed to be associated with elevated or impaired levels of autophagy. At present, studies have found that autophagy participates in the regulation of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis, pulmonary hypertension, acute lung injury, lung cancer, and other pulmonary diseases. Using recent literature on the signal transduction mechanisms of autophagy and the effects of autophagy signalling on lung diseases, this review intends to clarify the mechanisms of lung disease to guide the treatment of related diseases. The reviews of this paper are available via the supplemental material section.


Asunto(s)
Autofagia/fisiología , Enfermedades Pulmonares/fisiopatología , Animales , Humanos , Enfermedades Pulmonares/terapia , Transducción de Señal/fisiología
20.
Onco Targets Ther ; 12: 3421-3428, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31118692

RESUMEN

PURPOSE: N6-methyladenosine (m6A), the most abundant mRNA modification in mammals, is involved in various biological processes. KIAA1429 is an important methyltransferase participating in m6A modification. However, the role of KIAA1429 in hepatocellular carcinoma (HCC) is still not well understood. Here, we aimed to investigate the function of KIAA1429 and its corresponding regulation mechanisms in HCC. PATIENTS AND METHODS: HCC-related genes were analyzed by clinical and expression data of HCC patients in The Cancer Genome Atlas (TCGA) database. Expression of KIAA1429 was verified by quantitative reverse-transcription PCR, and interference efficiency was obtained using small interfering RNA (siRNA). Cell proliferation, migration, and invasion were assessed by cell counting kit-8 and transwell assays, and the m6A modification was detected by methylated RNA immunoprecipitation-PCR (MeRIP-PCR). RESULTS: We found a difference in the expression of KIAA1429 between HCC and normal hepatic tissues by analyzing data from the TCGA database. Comparing HCC cell lines (HepG2, Huh-7, HepG2.2.15) with normal hepatic cells (HL-7702), we observed an identically significant difference in KIAA1429 expression. KIAA1429 significantly enhanced proliferation, migration, and invasion of HepG2 cells. Moreover, Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis and correlation analysis revealed a significant negative correlation between KIAA1429 and ID2. In the subsequent MeRIP-PCR assay, downregulation of KIAA1429 inhibited m6A modification of ID2 mRNA. CONCLUSION: KIAA1429 facilitated migration and invasion of HCC by inhibiting ID2 via upregulating m6A modification of ID2 mRNA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA