Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
World J Clin Cases ; 12(17): 3168-3176, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38898838

RESUMEN

BACKGROUND: High-dose vitamin C treatment (HVCT) can reduce the adverse effect of chemotherapy and enhance the effect of antitumor therapy, which has been considered one of the safest alternative treatments. However, the severity of its adverse effects may have been underestimated. The most serious adverse effect is hemolysis, which may result in acute kidney injury or death. Although glucose-6-phosphate dehydrogenase (G6PD) deficiency is considered to be the main cause, the probability and pathological mechanism are not completely understood, leading to a lack of effective and standardized treatment methods. CASE SUMMARY: Two patients with colorectal cancer developed hemolytic anemia after using 1 g/kg HVCT. In contrast to previous cases, the lowest hemoglobin level in the two cases was < 50 g/L, which was lower than previously reported. This may be because Case 1 had chronic hepatitis B for many years, which caused abnormal liver reserve function, and Case 2 had grade II bone marrow suppression. Both patients improved and were discharged after blood replacement therapy. Our cases had the most severe degree of hemolysis but the best prognosis, suggesting that our treatment may be helpful for rescue of drug-induced hemolysis. This is the first review of the literature on hemolysis caused by HVCT, and we found that all patients with G6PD deficiency developed hemolysis after HVCT. CONCLUSION: G6PD deficiency should be considered as a contraindication to HVCT, and it is not recommended for patients with bone marrow suppression, moderate-to-severe anemia, hematopoietic abnormalities, or abnormal liver and kidney function. Early blood purification and steroid therapy may avoid acute kidney injury or death caused by HVCT-related hemolytic anemia.

2.
J Nucl Med ; 64(10): 1638-1646, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37385676

RESUMEN

The human epidermal growth factor receptor 2 (HER2)-targeting trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd) are antibody-drug conjugates (ADC) clinically used to treat HER2-positive breast cancer, with the latter receiving clinical approval in 2021 for HER2-positive gastric cancer. Lovastatin, a cholesterol-lowering drug, temporally elevates cell-surface HER2 in ways that enhance HER2-ADC binding and internalization. Methods: In an NCIN87 gastric xenograft model and a gastric patient-derived xenograft model, we used the 89Zr-labeled or 64Cu-labeled anti-HER2 antibody trastuzumab to investigate the dosing regimen of ADC therapy with and without coadministration of lovastatin. We compared the ADC efficacy of a multiple-dose ADC regime, which replicates the clinical dose regimen standard, with a single-dose regime. Results: T-DM1/lovastatin treatment inhibited tumor growth, regardless of multiple- or single-dose T-DM1 administration. Coadministration of lovastatin with T-DM1 or T-DXd as a single dose enhanced tumor growth inhibition, which was accompanied by a decrease in signal on HER2-targeted immuno-PET and a decrease in HER2-mediated signaling at the cellular level. DNA damage signaling was increased on ADC treatment in vitro. Conclusion: Our data from a gastric cancer xenograft show the utility of HER2-targeted immuno-PET to inform the tumor response to ADC therapies in combination with modulators of cell-surface target availability. Our studies also demonstrate that statins enhance ADC efficacy in both a cell-line and a patient-derived xenograft model in ways that enable a single-dose administration of the ADC.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Inmunoconjugados , Neoplasias Gástricas , Humanos , Femenino , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular Tumoral , Trastuzumab , Ado-Trastuzumab Emtansina/farmacología , Ado-Trastuzumab Emtansina/uso terapéutico , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/patología , Inmunoconjugados/uso terapéutico , Tomografía de Emisión de Positrones , Lovastatina/farmacología , Lovastatina/uso terapéutico
3.
Sheng Wu Gong Cheng Xue Bao ; 39(3): 1096-1106, 2023 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-36994574

RESUMEN

L-asparaginase (L-ASN) is widely applied in the treatment of malignant tumor and low-acrylamide food production, however, the low expression level hampers its application. Heterologous expression is an effective strategy to increase the expression level of target enzymes, and Bacillus is generally used as the host for efficient production of enzymes. In this study, the expression level of L-asparaginase in Bacillus was enhanced through optimization of expression element and host. Firstly, five signal peptides (SPSacC, SPAmyL, SPAprE, SPYwbN and SPWapA) were screened, among which SPSacC showed the best performance, reaching an activity of 157.61 U/mL. Subsequently, four strong promoters (P43, PykzA-P43, PUbay and PbacA) from Bacillus were screened, and tandem promoter PykzA-P43 showed the highest yield of L-asparaginase, which was 52.94% higher than that of control strain. Finally, three Bacillus expression hosts (B. licheniformis Δ0F3 and BL10, B. subtilis WB800) were investigated, and the maximum L-asparaginase activity, 438.3 U/mL, was reached by B. licheniformis BL10, which was an 81.83% increase compared with that of the control. This is also the highest level of L-asparaginase in shake flask reported to date. Taken together, this study constructed a B. licheniformis strain BL10/PykzA-P43-SPSacC-ansZ capable of efficiently producing L-asparaginase, which laid the foundation for industrial production of L-asparaginase.


Asunto(s)
Bacillus licheniformis , Bacillus , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Asparaginasa/genética , Bacillus/genética , Señales de Clasificación de Proteína , Regiones Promotoras Genéticas/genética , Bacillus subtilis/genética , Proteínas Bacterianas
4.
Proc Natl Acad Sci U S A ; 120(14): e2220413120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36972439

RESUMEN

Human epidermal growth factor receptor 2 (HER2) is overexpressed in various cancer types. HER2-targeting trastuzumab plus chemotherapy is used as first-line therapy for HER2-positive recurrent or primary metastatic gastric cancer, but intrinsic and acquired trastuzumab resistance inevitably develop over time. To overcome gastric cancer resistance to HER2-targeted therapies, we have conjugated trastuzumab with a beta-emitting therapeutic isotope, lutetium-177, to deliver radiation locally to gastric tumors with minimal toxicity. Because trastuzumab-based targeted radioligand therapy (RLT) requires only the extramembrane domain binding of membrane-bound HER2 receptors, HER2-targeting RLT can bypass any resistance mechanisms that occur downstream of HER2 binding. Leveraging our previous discoveries that statins, a class of cholesterol-lowering drugs, can enhance the cell surface-bound HER2 to achieve effective drug delivery in tumors, we proposed that the combination of statins and [177Lu]Lu-trastuzumab-based RLT can enhance the therapeutic efficacy of HER2-targeted RLT in drug-resistant gastric cancers. We demonstrate that lovastatin elevates cell surface HER2 levels and increases the tumor-absorbed radiation dose of [177Lu]Lu-DOTA-trastuzumab. Furthermore, lovastatin-modulated [177Lu]Lu-DOTA-trastuzumab RLT durably inhibits tumor growth and prolongs overall survival in mice bearing NCI-N87 gastric tumors and HER2-positive patient-derived xenografts (PDXs) of known clinical resistance to trastuzumab therapy. Statins also exhibit a radioprotective effect, reducing radiotoxicity in a mice cohort given the combination of statins and [177Lu]Lu-DOTA-trastuzumab. Since statins are commonly prescribed to patients, our results strongly support the feasibility of clinical studies that combine lovastatin with HER2-targeted RLT in HER2-postive patients and trastuzumab-resistant HER2-positive patients.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias Gástricas , Humanos , Animales , Ratones , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/radioterapia , Neoplasias Gástricas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Preparaciones Farmacéuticas , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Lovastatina/farmacología , Lovastatina/uso terapéutico , Línea Celular Tumoral
5.
Huan Jing Ke Xue ; 43(8): 4253-4261, 2022 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-35971721

RESUMEN

Taraxacum kok-saghyz Rodin (TSK) is an energy plant that can be used as a raw material for natural rubber. The aim of this study was to examine the remediation potential of TSK to lead (Pb)- and cadmium (Cd)-contaminated farmland soil. In this study, a pot experiment was conducted, and the "Soil Environmental Quality and Agricultural Land Soil Pollution Risk Control Standard (GB 15618-2018)" was used as reference. We set up four different concentrations of Pb and Cd pollution treatment to study the characteristics of the accumulation and tolerance of TSK to Pb and Cd. The results showed that as the content of Pb and Cd in the soil increased, the chlorophyll content and biomass of TSK gradually decreased, and the SOD, POD, and CAT enzyme activities gradually increased. The BCF and TF of Cd were between 1.20 and 1.50, indicating that TSK presented some characteristics of a Cd hyperaccumulator. The BCF and TF of Pb were between 0.71 and 1.11. Thus, TSK was a good Pb enrichment plant and possessed the potential to repair soil with ω(Pb) below 400 mg·kg-1. The accumulation of Pb and Cd gradually increased, and the maximum accumulation of Cd and Pb in the shoots was 9.832 µg·plant-1 and 1091.185 µg·plant-1, respectively. However, in lower concentrations of Pb- and Cd-contaminated soil, the removal rate was greater, and the remediation efficiency was better. Overall, using TSK to repair Pb- and Cd-contaminated farmland soil has good application prospects and economic value.


Asunto(s)
Contaminantes del Suelo , Taraxacum , Biodegradación Ambiental , Cadmio/análisis , Granjas , Plomo , Plantas , Suelo , Contaminantes del Suelo/análisis
6.
Genetics ; 221(3)2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35579349

RESUMEN

Liver Kinase B1 (LKB1) is known as a master kinase for 14 kinases related to the adenosine monophosphate-activated protein kinase. Two of them salt inducible kinase 3 and adenosine monophosphate-activated protein kinase α have previously been implicated in sleep regulation. We generated loss-of-function mutants for Lkb1 in both Drosophila and mice. Sleep, but not circadian rhythms, was reduced in Lkb1-mutant flies and in flies with neuronal deletion of Lkb1. Genetic interactions between Lkb1 and threonine to alanine mutation at residue 184 of adenosine monophosphate-activated protein kinase in Drosophila sleep or those between Lkb1 and Threonine to Glutamic Acid mutation at residue 196 of salt inducible kinase 3 in Drosophila viability have been observed. Sleep was reduced in mice after virally mediated reduction of Lkb1 in the brain. Electroencephalography analysis showed that nonrapid eye movement sleep and sleep need were both reduced in Lkb1-mutant mice. These results indicate that liver kinase B1 plays a physiological role in sleep regulation conserved from flies to mice.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ratones , Fosforilación , Proteínas Quinasas/metabolismo , Sueño/genética , Treonina
7.
J Phys Chem Lett ; 12(46): 11361-11370, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34784226

RESUMEN

Development of efficient bifunctional nonprecious metallic electrocatalysts for hydrogen electrochemistry in alkaline solution is of importance to enable commercialization of a low-cost alkaline hydrogen fuel cell and water electrolyzer, but it is very challenging. Two-dimensional (2D) MXene-based electrocatalysts hold tremendous potential for the applications of hydrogen fuel cell and water electrolyzer. Here, we successfully immobilized transition-metal-based NiMo nanoparticles (NPs) on 2D Ti3C2Tx (Tx: surface terminations, such as O, OH, or F) surfaces by a wet chemical method. Our results demonstrate that the NiMo NPs are monodispersed on Ti3C2Tx with surface functionalization. These monodisperse NPs resulted in superior hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) activities in an alkaline media. The NiMo NPs/Ti3C2Tx in 1.0 M KOH yielded an HER current of -10 mA cm-2 at -0.044 V vs reversible hydrogen electrode (RHE), nearly 232 mV smaller than that of the parent NiMo NPs. The NiMo NPs/Ti3C2Tx produced an HOR current density of 1.5 mA cm-2 at 0.1 V vs RHE. Density functional theory (DFT) results further reveal that Ti3C2Tx support can facilitate the charge transfer to metallic NPs and tailor the electronic structure of catalytic sites, resulting in optimized adsorption free energies of H* species for hydrogen electrochemistry. This work provides a facile and universal strategy in the development of 2D Ti3C2Tx with nonprecious metals for low-cost bifunctional hydrogen electrocatalysts.

8.
J Biol Chem ; 297(1): 100775, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34022218

RESUMEN

Cellular pyruvate is an essential metabolite at the crossroads of glycolysis and oxidative phosphorylation, capable of supporting fermentative glycolysis by reduction to lactate mediated by lactate dehydrogenase (LDH) among other functions. Several inherited diseases of mitochondrial metabolism impact extracellular (plasma) pyruvate concentrations, and [1-13C]pyruvate infusion is used in isotope-labeled metabolic tracing studies, including hyperpolarized magnetic resonance spectroscopic imaging. However, how these extracellular pyruvate sources impact intracellular metabolism is not clear. Herein, we examined the effects of excess exogenous pyruvate on intracellular LDH activity, extracellular acidification rates (ECARs) as a measure of lactate production, and hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates across a panel of tumor and normal cells. Combined LDH activity and LDHB/LDHA expression analysis intimated various heterotetrameric isoforms comprising LDHA and LDHB in tumor cells, not only canonical LDHA. Millimolar concentrations of exogenous pyruvate induced substrate inhibition of LDH activity in both enzymatic assays ex vivo and in live cells, abrogated glycolytic ECAR, and inhibited hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in cellulo. Of importance, the extent of exogenous pyruvate-induced inhibition of LDH and glycolytic ECAR in live cells was highly dependent on pyruvate influx, functionally mediated by monocarboxylate transporter-1 localized to the plasma membrane. These data provided evidence that highly concentrated bolus injections of pyruvate in vivo may transiently inhibit LDH activity in a tissue type- and monocarboxylate transporter-1-dependent manner. Maintaining plasma pyruvate at submillimolar concentrations could potentially minimize transient metabolic perturbations, improve pyruvate therapy, and enhance quantification of metabolic studies, including hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging and stable isotope tracer experiments.


Asunto(s)
L-Lactato Deshidrogenasa/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/farmacología , Simportadores/metabolismo , Ácidos/metabolismo , Tampones (Química) , Isótopos de Carbono , Extractos Celulares , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Espacio Extracelular/química , Glucólisis/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Cinética , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/biosíntesis , Especificidad por Sustrato/efectos de los fármacos
9.
Proc Natl Acad Sci U S A ; 117(36): 22378-22389, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32839325

RESUMEN

Hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (MRSI) is a noninvasive metabolic-imaging modality that probes carbon flux in tissues and infers the state of metabolic reprograming in tumors. Prevailing models attribute elevated hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates in aggressive tumors to enhanced glycolytic flux and lactate dehydrogenase A (LDHA) activity (Warburg effect). By contrast, we find by cross-sectional analysis using genetic and pharmacological tools in mechanistic studies applied to well-defined genetically engineered cell lines and tumors that initial hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion rates as well as global conversion were highly dependent on and critically rate-limited by the transmembrane influx of [1-13C]pyruvate mediated predominately by monocarboxylate transporter-1 (MCT1). Specifically, in a cell-encapsulated alginate bead model, induced short hairpin (shRNA) knockdown or overexpression of MCT1 quantitatively inhibited or enhanced, respectively, unidirectional pyruvate influxes and [1-13C]pyruvate-to-[1-13C]lactate conversion rates, independent of glycolysis or LDHA activity. Similarly, in tumor models in vivo, hyperpolarized [1-13C]pyruvate-to-[1-13C]lactate conversion was highly dependent on and critically rate-limited by the induced transmembrane influx of [1-13C]pyruvate mediated by MCT1. Thus, hyperpolarized [1-13C]pyruvate MRSI measures primarily MCT1-mediated [1-13C]pyruvate transmembrane influx in vivo, not glycolytic flux or LDHA activity, driving a reinterpretation of this maturing new technology during clinical translation. Indeed, Kaplan-Meier survival analysis for patients with pancreatic, renal, lung, and cervical cancers showed that high-level expression of MCT1 correlated with poor overall survival, and only in selected tumors, coincident with LDHA expression. Thus, hyperpolarized [1-13C]pyruvate MRSI provides a noninvasive functional assessment primarily of MCT1 as a clinical biomarker in relevant patient populations.


Asunto(s)
Isótopos de Carbono/metabolismo , Membrana Celular/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo , Simportadores/metabolismo , Animales , Isótopos de Carbono/análisis , Isótopos de Carbono/química , Línea Celular Tumoral , Membrana Celular/química , Femenino , Humanos , Ácido Láctico/análisis , Ácido Láctico/química , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ácido Pirúvico/análisis , Ácido Pirúvico/química
10.
J Chromatogr A ; 1620: 461036, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32201039

RESUMEN

Leaves, flowers, fruits and stems (44 sample groups) were collected from mature Camptotheca acuminate during 2017.3-2018.3 and classified by ultra-high performance liquid chromatography coupled with quadrupole-time of flight-mass spectrometry based metabolomics. One hundred metabolites including forty-seven alkaloids, fifteen terpenes, thirty-two polyphenols and six other metabolites were rapidly identified through the in-house database alignment at first glance. Thirty-three alkaloids classified into five groups including camptothecin group (CG1-13), pumiloside group (PG1-5), strictosidinic acid group (SG1-3), vincosamide group (VG1-7), and a new hybrid group, vincosamide-camptothecin group (VC1-5) were mined and further characterized by MS/MS analyses. The identification of two untapped biosynthetic precursors, 2-hydroxypumiloside (PG2) and 16­hydroxy­15, 16-dihydrocamptothecoside (CG3), along with sixteen new alkaloids enables us for a better understanding of camptothecin biogenetic reasoning. The underlying enzymes involved in camptothecin biosynthesis were also proposed according to the guiding metabolic map, thus purposefully mining of enzymes involved in the downstream biosynthetic pathway of camptothecin could be initiated with the help of this map.


Asunto(s)
Alcaloides/análisis , Vías Biosintéticas , Camptotheca/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Camptotecina/análogos & derivados , Camptotecina/análisis , Camptotecina/química , Camptotecina/metabolismo , Carbolinas/análisis , Carbolinas/química , Bases de Datos como Asunto , Análisis Discriminante , Glicósidos/análisis , Glicósidos/química , Alcaloides Indólicos/análisis , Alcaloides Indólicos/química , Análisis de los Mínimos Cuadrados , Redes y Vías Metabólicas , Metaboloma , Metabolómica , Análisis Multivariante , Análisis de Componente Principal
11.
Cells ; 8(12)2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766580

RESUMEN

Tumors lack a well-regulated vascular supply of O2 and often fail to balance O2 supply and demand. Net O2 tension within many tumors may not only depend on O2 delivery but also depend strongly on O2 demand. Thus, tumor O2 consumption rates may influence tumor hypoxia up to true anoxia. Recent reports have shown that many human tumors in vivo depend primarily on oxidative phosphorylation (OxPhos), not glycolysis, for energy generation, providing a driver for consumptive hypoxia and an exploitable vulnerability. In this regard, IACS-010759 is a novel high affinity inhibitor of OxPhos targeting mitochondrial complex-I that has recently completed a Phase-I clinical trial in leukemia. However, in solid tumors, the effective translation of OxPhos inhibitors requires methods to monitor pharmacodynamics in vivo. Herein, 18F-fluoroazomycin arabinoside ([18F]FAZA), a 2-nitroimidazole-based hypoxia PET imaging agent, was combined with a rigorous test-retest imaging method for non-invasive quantification of the reversal of consumptive hypoxia in vivo as a mechanism-specific pharmacodynamic (PD) biomarker of target engagement for IACS-010759. Neither cell death nor loss of perfusion could account for the IACS-010759-induced decrease in [18F]FAZA retention. Notably, in an OxPhos-reliant melanoma tumor, a titration curve using [18F]FAZA PET retention in vivo yielded an IC50 for IACS-010759 (1.4 mg/kg) equivalent to analysis ex vivo. Pilot [18F]FAZA PET scans of a patient with grade IV glioblastoma yielded highly reproducible, high-contrast images of hypoxia in vivo as validated by CA-IX and GLUT-1 IHC ex vivo. Thus, [18F]FAZA PET imaging provided direct evidence for the presence of consumptive hypoxia in vivo, the capacity for targeted reversal of consumptive hypoxia through the inhibition of OxPhos, and a highly-coupled mechanism-specific PD biomarker ready for translation.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Oxadiazoles/farmacología , Piperidinas/farmacología , Hipoxia Tumoral/efectos de los fármacos , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Desnudos , Nitroimidazoles , Fosforilación Oxidativa/efectos de los fármacos , Oxígeno/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos
12.
Molecules ; 24(17)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480258

RESUMEN

Gouty arthritis (GA) is commonly caused by deposition of monosodium urate (MSU) crystals within the joint capsule, bursa, cartilage, bone, or other periarticular tissues after chronic hyperuricemia. Clinically, GA is characterized by acute episodes of joint inflammation, which is most frequently encountered in the major joints, and also has a significant impact on quality of life. Pulchinenoside b4(P-b4) has a wide range of biological activities, including antitumor, anti-inflammatory, antiviral and immunomodulatory activities. Currently, the anti-GA activity and metabolomic profiles after being treated by P-b4 have not been reported. In this paper, for the first time, we have performed a non-targeted metabolomics analysis of serum obtained from an MSU crystal-induced GA rat model intervened by P-b4, using ultra-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry. In this study, the main pharmacodynamics of different dosing methods and dosages of P-b4 was firstly investigated. Results have shown that P-b4 possesses high anti-inflammatory activity. These results demonstrated changes in serum metabolites with 32 potential biomarkers. Arachidonic acid, sphingolipid, and glycerophospholipid metabolism are considered to be the most relevant metabolic pathway with P-b4 treatment effect in this study. Moreover, the changes of metabolites and the self-extinction of model effects within 24 h reveals important information for GA diagnostic criteria: The regression of clinical symptoms or the decline of some biochemical indicators cannot be regarded as the end point of GA treatment. Furthermore, our research group plans to conduct further metabolomics research on the clinical course of GA.


Asunto(s)
Artritis Gotosa/sangre , Artritis Gotosa/tratamiento farmacológico , Cromatografía Liquida/métodos , Metabolómica , Espectrometría de Masas en Tándem/métodos , Triterpenos/administración & dosificación , Triterpenos/uso terapéutico , Animales , Artritis Gotosa/inducido químicamente , Biomarcadores/sangre , Cristalización , Análisis Discriminante , Modelos Animales de Enfermedad , Femenino , Articulaciones/patología , Análisis de los Mínimos Cuadrados , Redes y Vías Metabólicas/efectos de los fármacos , Análisis Multivariante , Umbral del Dolor , Análisis de Componente Principal , Ratas Sprague-Dawley , Triterpenos/química , Triterpenos/farmacología , Ácido Úrico
13.
Eur J Med Chem ; 182: 111571, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31425908

RESUMEN

Anaplastic lymphoma kinase (ALK), an oncogenic receptor tyrosine kinase, is a therapeutic target in various cancers, including non-small cell lung cancer. Although several ALK inhibitors, including crizotinib, ceritinib, and alectinib, are approved for cancer treatment, their long-term benefit is often limited by the cancer's acquisition of resistance owing to secondary point mutations in ALK. Importantly, some ALK inhibitors cannot cross the blood-brain barrier (BBB) and thus have little or no efficacy against brain metastases. The introduction of a lipophilic moiety, such as a fluoroethyl group may improve the drug's BBB penetration. Herein, we report the synthesis of fluoroethyl analogues of crizotinib 1, alectinib 4, and ceritinib 9, and their radiolabeling with 18F for pharmacokinetic studies. The fluoroethyl derivatives and their radioactive analogues were obtained in good yields with high purity and good molar activity. A cytotoxicity screen in ALK-expressing H2228 lung cancer cells showed that the analogues had up to nanomolar potency and the addition of the fluorinated moiety had minimal impact overall on the potency of the original drugs. Positron emission tomography in healthy mice showed that the analogues had enhanced BBB penetration, suggesting that they have therapeutic potential against central nervous system metastases.


Asunto(s)
Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Antineoplásicos/farmacología , Carbazoles/farmacología , Crizotinib/farmacología , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Sulfonas/farmacología , Quinasa de Linfoma Anaplásico/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Carbazoles/síntesis química , Carbazoles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Crizotinib/síntesis química , Crizotinib/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Radioisótopos de Flúor , Humanos , Ratones , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Tomografía de Emisión de Positrones , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Cintigrafía , Relación Estructura-Actividad , Sulfonas/síntesis química , Sulfonas/química , Distribución Tisular
14.
J Phys Chem A ; 123(29): 6304-6312, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31253043

RESUMEN

The growth of aerosol particles is intimately related to chemical reactions in the gas phase and particle phase and at gas-aerosol particle interfaces. While chemical reactions in gas and particle phases are well documented, there is very little information regarding interface-related reactions. The interface of gas-aerosol particles not only facilitates a physical channel for organic species to enter and exit but also provides a necessary lane for culturing chemical reactions. The physical and chemical properties of gas-particle interfaces have not been studied extensively, nor have the reactions occurring at the interfaces been well researched. This is mainly due to the fact that there is a lack of suitable in situ interface-sensitive analytical techniques for direct measurements of interfacial properties. The motivation behind this research is to understand how interfaces play a role in the growth of aerosol particles. We have developed in situ interface-specific second harmonic scattering to examine interfacial behaviors of molecules of aerosol particles under different relative humidity (RH) and salt concentrations. Both the relative humidity and salt concentration can change the particle size and the phase of the aerosol. RH not only varies the concentration of solutes inside aerosol particles but also changes interfacial hydration in local regions. Organic molecules were found to exhibit distinct behaviors at the interfaces and bulk on NaCl particles under different RH levels. Our quantitative analyses showed that the interfacial adsorption free energies remain unchanged while interfacial areas increase as the relative humidity increases. Furthermore, the surface tension of NaCl particles decreases as the RH increases. Our experimental findings from the novel nonlinear optical scattering technique stress the importance of interfacial water behaviors on aerosol particles in the atmosphere.

15.
Nat Commun ; 10(1): 1986, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064979

RESUMEN

Natural D-serine (D-Ser) has been detected in animals more than two decades ago, but little is known about the physiological functions of D-Ser. Here we reveal sleep regulation by endogenous D-Ser. Sleep was decreased in mutants defective in D-Ser synthesis or its receptor the N-methyl-D-aspartic receptor 1 (NMDAR1), but increased in mutants defective in D-Ser degradation. D-Ser but not L-Ser rescued the phenotype of mutants lacking serine racemase (SR), the key enzyme for D-Ser synthesis. Pharmacological and triple gene knockout experiments indicate that D-Ser functions upstream of NMDAR1. Expression of SR was detected in both the nervous system and the intestines. Strikingly, reintroduction of SR into specific intestinal epithelial cells rescued the sleep phenotype of sr mutants. Our results have established a novel physiological function for endogenous D-Ser and a surprising role for intestinal cells.


Asunto(s)
Proteínas de Drosophila/metabolismo , Racemasas y Epimerasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Sueño/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Drosophila/fisiología , Proteínas de Drosophila/genética , Células Epiteliales/metabolismo , Femenino , Técnicas de Inactivación de Genes , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Masculino , Modelos Animales , Racemasas y Epimerasas/genética , Receptores de N-Metil-D-Aspartato/genética , Estereoisomerismo
16.
Anal Chem ; 90(18): 10967-10973, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30111093

RESUMEN

The gas-aerosol particle interface is believed to contribute to the growth of secondary organic aerosols in the atmosphere. Despite its importance, the chemical composition of the interface has not been probed directly because of a lack of suitable interface-specific analytical techniques. The preliminary result in our early work has demonstrated direct observations of molecules at the gas-aerosol particle interface with the development of second harmonic scattering (SHS). However, the SHS technique is far away from being an analytical tool of chemical compositions at the gas-aerosol particle interface. In this work, we continued to develop the interface-specific SHS for in situ chemical analysis of molecules at the gas-aerosol particle interface. As an example, we demonstrated coherent SHS signal of a new SHS probe, crystal violet (CV), from interfaces of aerosol particles. The development of the SHS technique includes: (1) Optimization for a more efficient femtosecond laser system in the generation of SHS from aerosol particles. A near 5 MHz repetition rate of a femtosecond laser was found to be optimal for the generation of SHS; (2) exploration of a more effective detector for SHS of aerosol particles. We found that both a CCD detector and a single-photon counter produce similar signal-to-noise ratios of the interfacial SHS signals from aerosol particles. The CCD detector is a more effective option for the detection of SHS and could greatly reduce sampling time of the interfacial responses; (3) combination of the optimal laser system with the CCD detector, which has greatly improved the detection sensitivity of interfacial molecules by more than 2 orders of magnitude and could potentially detect interfacial SHS from a single aerosol particle. These experimental results not only provided a thorough analysis of the SHS technique but also built a solid foundation for further development of a new vibrational sum frequency scattering (SFS) technique for chemical structures at the gas-aerosol particle interface.

17.
Sci Rep ; 8(1): 7595, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29765072

RESUMEN

Restenosis caused by neointimal hyperplasia significantly decreases long-term efficacy of percutaneous transluminal angioplasty (PTA), stenting, and by-pass surgery for managing coronary and peripheral arterial diseases. A major cause of pathological neointima formation is abnormal vascular smooth muscle cell (VSMC) proliferation and migration. Notoginsenoside R1 (NGR1) is a novel saponin that is derived from Panax notoginseng and has reported cardioprotective, neuroprotective and anti-inflammatory effects. However, its role in modulating VSMC neointima formation remains unexplored. Herein, we report that NGR1 inhibits serum-induced VSMC proliferation and migration by regulating VSMC actin cytoskeleton dynamics. Using a mouse femoral artery endothelium denudation model, we further demonstrate that systemic administration of NGR1 had a potent therapeutic effect in mice, significantly reducing neointimal hyperplasia following acute vessel injury. Mechanistically, we show that NGR1's mode of action is through inhibiting the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Taken together, this study identified NGR1 as a potential therapeutic agent for combating restenosis after PTA in cardiovascular diseases.


Asunto(s)
Ginsenósidos/administración & dosificación , Hiperplasia/tratamiento farmacológico , Músculo Liso Vascular/citología , Neointima/tratamiento farmacológico , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Ginsenósidos/farmacología , Humanos , Hiperplasia/metabolismo , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Neointima/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
18.
Int J Mol Sci ; 17(9)2016 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-27598153

RESUMEN

Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression.


Asunto(s)
Glándulas Suprarrenales/efectos de los fármacos , Histonas/metabolismo , Nicotina/farmacología , Fosfoproteínas/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Factor de Transcripción YY1/metabolismo , Acetilación , Glándulas Suprarrenales/embriología , Glándulas Suprarrenales/metabolismo , Animales , Línea Celular Tumoral , Femenino , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/metabolismo , Humanos , Masculino , Nicotina/toxicidad , Fosfoproteínas/genética , Embarazo , Procesamiento Proteico-Postraduccional , Ratas , Ratas Wistar
19.
Ultrastruct Pathol ; 40(5): 288-95, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27598972

RESUMEN

The aim of this study was to investigate the effects of prenatal and lactation nicotine exposure on the morphology and function of brown adipose tissue (BAT) in male rat offspring. We conducted a morphological assay and gene expression study of interscapular BAT (iBAT) in male rat offspring. The male offspring from nicotine-exposed dams exhibited higher body weight and iBAT weight. Hematoxylin and eosin staining and transmission electron microscopy showed that iBAT from nicotine-exposed male offspring presented a "whitening" phenotype characterized by lipid droplet accumulation and impaired mitochondria with a randomly oriented and fractured cristae. The expression of the iBAT structure and function-related genes all decreased in nicotine-exposed male offspring. These data indicate that prenatal and lactation nicotine exposure affects morphology and function of iBAT in male rat offspring.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/ultraestructura , Exposición Materna/efectos adversos , Nicotina/efectos adversos , Efectos Tardíos de la Exposición Prenatal/patología , Tejido Adiposo Pardo/patología , Animales , Peso Corporal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Lactancia , Masculino , Microscopía Electrónica de Transmisión , Embarazo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma/efectos de los fármacos
20.
Endocrinology ; 157(11): 4276-4286, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27589084

RESUMEN

The present study aims to evaluate whether perinatal nicotine (NIC) exposure increases obesity susceptibility in adult male rat offspring by altering early adipogenesis. NIC was sc administered (2.0 mg/kg per day) to pregnant rats from gestational day 9 to the time of weaning (postnatal day 28). At weaning, NIC-exposed male pups had an increased body weight and inguinal sc fat mass and a decreased average cell area of adipocyte, which was accompanied by an overexpression of adipogenic and lipogenic genes in the epididymal white adipose tissue. Additionally, the hepatic lipogenic gene levels from NIC-exposed male pups were also affected. At 12 and 26 weeks of age, body weight and fat mass were increased, whereas there was no change in food intake in NIC-exposed male offspring. Adipogenic and lipogenic genes, glucose transporter 4, and leptin mRNA levels were increased, whereas adiponectin mRNA levels were decreased in the epididymal white adipose tissue of NIC-exposed males. The hepatic lipogenic gene expression of NIC-exposed males was increased. NIC-exposed male offspring showed normal glycemia and a higher serum insulin level, homeostasis model assessment of insulin resistance, and homeostasis model assessment of ß-cell function. Furthermore, the NIC-exposed male offspring showed higher serum lipids and Castelli index I and lower nonesterified fatty acid. At 26 weeks, in the ip glucose and insulin tolerance tests, the glucose clearance was delayed, and the area under the curve was higher in the NIC-exposed male offspring. In conclusion, perinatal NIC exposure increased obesity susceptibility in adult male rat offspring by altering early adipogenesis.


Asunto(s)
Adipogénesis/efectos de los fármacos , Nicotina/farmacología , Obesidad/inducido químicamente , Obesidad/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Femenino , Transportador de Glucosa de Tipo 4/genética , Insulina/sangre , Resistencia a la Insulina , Leptina/genética , Lipogénesis/genética , Lipogénesis/fisiología , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal , ARN Mensajero/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA