Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38277467

RESUMEN

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Péptidos , Proteómica
2.
Nat Commun ; 14(1): 7060, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923732

RESUMEN

Engulfment of cellular material and proteins is a key function for microglia, a resident macrophage of the central nervous system (CNS). Among the techniques used to measure microglial engulfment, confocal light microscopy has been used the most extensively. Here, we show that autofluorescence (AF) likely due to lipofuscin (lipo-AF) and typically associated with aging, can also be detected within microglial lysosomes in the young mouse brain by light microscopy. This lipo-AF signal accumulates first within microglia and it occurs earliest in white versus gray matter. Importantly, in gray matter, lipo-AF signal can confound the interpretation of antibody-labeled synaptic material within microglia in young adult mice. We further show that there is an age-dependent accumulation of lipo-AF inside and outside of microglia, which is not affected by amyloid plaques. We finally implement a robust and cost-effective strategy to quench AF in mouse, marmoset, and human brain tissue.


Asunto(s)
Lipofuscina , Microglía , Ratones , Humanos , Animales , Microglía/metabolismo , Lipofuscina/metabolismo , Sistema Nervioso Central/metabolismo , Macrófagos/metabolismo , Microscopía Confocal
3.
Front Immunol ; 14: 1235791, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622115

RESUMEN

Background and objectives: Extracellular vesicles and particles (EVPs) are released from virtually all cell types, and may package many inflammatory factors and, in the case of infection, viral components. As such, EVPs can play not only a direct role in the development and progression of disease but can also be used as biomarkers. Here, we characterized immune signatures of EVPs from the cerebrospinal fluid (CSF) of individuals with HTLV-1-associated myelopathy (HAM), other chronic neurologic diseases, and healthy volunteers (HVs) to determine potential indicators of viral involvement and mechanisms of disease. Methods: We analyzed the EVPs from the CSF of HVs, individuals with HAM, HTLV-1-infected asymptomatic carriers (ACs), and from patients with a variety of chronic neurologic diseases of both known viral and non-viral etiologies to investigate the surface repertoires of CSF EVPs during disease. Results: Significant increases in CD8+ and CD2+ EVPs were found in HAM patient CSF samples compared to other clinical groups (p = 0.0002 and p = 0.0003 compared to HVs, respectively, and p = 0.001 and p = 0.0228 compared to MS, respectively), consistent with the immunopathologically-mediated disease associated with CD8+ T-cells in the central nervous system (CNS) of HAM patients. Furthermore, CD8+ (p < 0.0001), CD2+ (p < 0.0001), CD44+ (p = 0.0176), and CD40+ (p = 0.0413) EVP signals were significantly increased in the CSF from individuals with viral infections compared to those without. Discussion: These data suggest that CD8+ and CD2+ CSF EVPs may be important as: 1) potential biomarkers and indicators of disease pathways for viral-mediated neurological diseases, particularly HAM, and 2) as possible meditators of the disease process in infected individuals.


Asunto(s)
Vesículas Extracelulares , Enfermedades del Sistema Nervioso , Paraparesia Espástica Tropical , Humanos , Sistema Nervioso Central , Antígenos CD40 , Enfermedad Crónica
4.
Neurology ; 100(24): e2466-e2476, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37105760

RESUMEN

BACKGROUND AND OBJECTIVES: Neurologic outcomes in people with HIV (PWH) on long-duration antiretroviral therapy (ART) are not fully understood, and the underlying pathophysiology is unclear. To address this, we established a cohort of such individuals and compared them with HIV-negative controls using a novel matching technique. Both groups underwent extensive cognitive testing, evaluation for psychiatric measures, and MRI and CSF analyses. METHODS: Participants underwent comprehensive neuropsychological testing and completed standardized questionnaires measuring depressive symptoms, perceptions of own functioning, and activities of daily living as part of an observational study. Brain MRI and lumbar puncture were optional. Coarsened Exact Matching was used to reduce between-group differences in age and sex, and weighted linear/logistic regression models were used to assess the effect of HIV on outcomes. RESULTS: Data were analyzed from 155 PWH on ART for at least 15 years and 100 HIV-negative controls. Compared with controls, PWH scored lower in the domains of attention/working memory (PWH least square mean [LSM] = 50.4 vs controls LSM = 53.1, p = 0.008) and motor function (44.6 vs 47.7, p = 0.009) and a test of information processing speed (symbol search 30.3 vs 32.2, p = 0.003). They were more likely to self-report a higher number of cognitive difficulties in everyday life (p = 0.011). PWH also reported more depressive symptoms, general anxiety, and use of psychiatric medications (all with p < 0.05). PWH had reduced proportions of subcortical gray matter on MRI (ß = -0.001, p < 0.001), and CSF showed elevated levels of neurofilament light chain (664 vs 529 pg/mL, p = 0.01) and tumor necrosis factor α (0.229 vs 0.156 ng/mL, p = 0.0008). DISCUSSION: PWH, despite effective ART for over a decade, displayed neurocognitive deficits and mood abnormalities. MRI and CSF analyses revealed reduced brain volume and signs of ongoing neuronal injury and neuroinflammation. As the already large proportion of virologically controlled PWH continues to grow, longitudinal studies should be conducted to elucidate the implications of cognitive, psychiatric, MRI, and CSF abnormalities in this group.


Asunto(s)
Disfunción Cognitiva , Infecciones por VIH , Humanos , Actividades Cotidianas , Infecciones por VIH/tratamiento farmacológico , Cognición , Memoria a Corto Plazo
5.
Brain ; 146(5): 1758-1774, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36408894

RESUMEN

This article reviews recent developments in the application of cell-free DNA-based liquid biopsies to neurological diseases. Over the past few decades, an explosion of interest in the use of accessible biofluids to identify and track molecular disease has revolutionized the fields of oncology, prenatal medicine and others. More recently, technological advances in signal detection have allowed for informative analysis of biofluids that are typically sparse in cells and other circulating components, such as CSF. In parallel, advancements in epigenetic profiling have allowed for novel applications of liquid biopsies to diseases without characteristic mutational profiles, including many degenerative, autoimmune, inflammatory, ischaemic and infectious disorders. These events have paved the way for a wide array of neurological conditions to benefit from enhanced diagnostic, prognostic, and treatment abilities through the use of liquid biomarkers: a 'liquid biopsy' approach. This review includes an overview of types of liquid biopsy targets with a focus on circulating cell-free DNA, methods used to identify and probe potential liquid biomarkers, and recent applications of such biomarkers to a variety of complex neurological conditions including CNS tumours, stroke, traumatic brain injury, Alzheimer's disease, epilepsy, multiple sclerosis and neuroinfectious disease. Finally, the challenges of translating liquid biopsies to use in clinical neurology settings-and the opportunities for improvement in disease management that such translation may provide-are discussed.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neurología , Embarazo , Femenino , Humanos , Ácidos Nucleicos Libres de Células/genética , Biomarcadores de Tumor/genética , Biopsia Líquida/métodos , Mutación
6.
Neuroimage Clin ; 35: 103101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35792417

RESUMEN

Magnetic resonance imaging (MRI) is a fundamental tool in the diagnosis and management of neurological diseases such as multiple sclerosis (MS). New portable, low-field strength, MRI scanners could potentially lower financial and technical barriers to neuroimaging and reach underserved or disabled populations, but the sensitivity of these devices for MS lesions is unknown. We sought to determine if white matter lesions can be detected on a portable 64mT scanner, compare automated lesion segmentations and total lesion volume between paired 3T and 64mT scans, identify features that contribute to lesion detection accuracy, and explore super-resolution imaging at low-field. In this prospective, cross-sectional study, same-day brain MRI (FLAIR, T1w, and T2w) scans were collected from 36 adults (32 women; mean age, 50 ± 14 years) with known or suspected MS using Siemens 3T (FLAIR: 1 mm isotropic, T1w: 1 mm isotropic, and T2w: 0.34-0.5 × 0.34-0.5 × 3-5 mm) and Hyperfine 64mT (FLAIR: 1.6 × 1.6 × 5 mm, T1w: 1.5 × 1.5 × 5 mm, and T2w: 1.5 × 1.5 × 5 mm) scanners at two centers. Images were reviewed by neuroradiologists. MS lesions were measured manually and segmented using an automated algorithm. Statistical analyses assessed accuracy and variability of segmentations across scanners and systematic scanner biases in automated volumetric measurements. Lesions were identified on 64mT scans in 94% (31/33) of patients with confirmed MS. The average smallest lesions manually detected were 5.7 ± 1.3 mm in maximum diameter at 64mT vs 2.1 ± 0.6 mm at 3T, approaching the spatial resolution of the respective scanner sequences (3T: 1 mm, 64mT: 5 mm slice thickness). Automated lesion volume estimates were highly correlated between 3T and 64mT scans (r = 0.89, p < 0.001). Bland-Altman analysis identified bias in 64mT segmentations (mean = 1.6 ml, standard error = 5.2 ml, limits of agreement = -19.0-15.9 ml), which over-estimated low lesion volume and under-estimated high volume (r = 0.74, p < 0.001). Visual inspection revealed over-segmentation was driven venous hyperintensities on 64mT T2-FLAIR. Lesion size drove segmentation accuracy, with 93% of lesions > 1.0 ml and all lesions > 1.5 ml being detected. Using multi-acquisition volume averaging, we were able to generate 1.6 mm isotropic images on the 64mT device. Overall, our results demonstrate that in established MS, a portable 64mT MRI scanner can identify white matter lesions, and that automated estimates of total lesion volume correlate with measurements from 3T scans.


Asunto(s)
Esclerosis Múltiple , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Esclerosis Múltiple/patología , Neuroimagen , Estudios Prospectivos
7.
Top Magn Reson Imaging ; 31(3): 31-39, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35767314

RESUMEN

OBJECTIVES: Automated whole brain segmentation from magnetic resonance images is of great interest for the development of clinically relevant volumetric markers for various neurological diseases. Although deep learning methods have demonstrated remarkable potential in this area, they may perform poorly in nonoptimal conditions, such as limited training data availability. Manual whole brain segmentation is an incredibly tedious process, so minimizing the data set size required for training segmentation algorithms may be of wide interest. The purpose of this study was to compare the performance of the prototypical deep learning segmentation architecture (U-Net) with a previously published atlas-free traditional machine learning method, Classification using Derivative-based Features (C-DEF) for whole brain segmentation, in the setting of limited training data. MATERIALS AND METHODS: C-DEF and U-Net models were evaluated after training on manually curated data from 5, 10, and 15 participants in 2 research cohorts: (1) people living with clinically diagnosed HIV infection and (2) relapsing-remitting multiple sclerosis, each acquired at separate institutions, and between 5 and 295 participants' data using a large, publicly available, and annotated data set of glioblastoma and lower grade glioma (brain tumor segmentation). Statistics was performed on the Dice similarity coefficient using repeated-measures analysis of variance and Dunnett-Hsu pairwise comparison. RESULTS: C-DEF produced better segmentation than U-Net in lesion (29.2%-38.9%) and cerebrospinal fluid (5.3%-11.9%) classes when trained with data from 15 or fewer participants. Unlike C-DEF, U-Net showed significant improvement when increasing the size of the training data (24%-30% higher than baseline). In the brain tumor segmentation data set, C-DEF produced equivalent or better segmentations than U-Net for enhancing tumor and peritumoral edema regions across all training data sizes explored. However, U-Net was more effective than C-DEF for segmentation of necrotic/non-enhancing tumor when trained on 10 or more participants, probably because of the inconsistent signal intensity of the tissue class. CONCLUSIONS: These results demonstrate that classical machine learning methods can produce more accurate brain segmentation than the far more complex deep learning methods when only small or moderate amounts of training data are available (n ≤ 15). The magnitude of this advantage varies by tissue and cohort, while U-Net may be preferable for deep gray matter and necrotic/non-enhancing tumor segmentation, particularly with larger training data sets (n ≥ 20). Given that segmentation models often need to be retrained for application to novel imaging protocols or pathology, the bottleneck associated with large-scale manual annotation could be avoided with classical machine learning algorithms, such as C-DEF.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Infecciones por VIH , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Logísticos , Imagen por Resonancia Magnética/métodos
8.
Neuroimage Clin ; 33: 102939, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35026625

RESUMEN

BACKGROUND: The lack of systematic evidence on leptomeningeal enhancement (LME) on MRI in neurological diseases, including multiple sclerosis (MS), hampers its interpretation in clinical routine and research settings. PURPOSE: To perform a systematic review and meta-analysis of MRI LME in MS and other neurological diseases. MATERIALS AND METHODS: In a comprehensive literature search in Medline, Scopus, and Embase, out of 2292 publications, 459 records assessing LME in neurological diseases were eligible for qualitative synthesis. Of these, 135 were included in a random-effects model meta-analysis with subgroup analyses for MS. RESULTS: Of eligible publications, 161 investigated LME in neoplastic neurological (n = 2392), 91 in neuroinfectious (n = 1890), and 75 in primary neuroinflammatory diseases (n = 4038). The LME-proportions for these disease classes were 0.47 [95%-CI: 0.37-0.57], 0.59 [95%-CI: 0.47-0.69], and 0.26 [95%-CI: 0.20-0.35], respectively. In a subgroup analysis comprising 1605 MS cases, LME proportion was 0.30 [95%-CI 0.21-0.42] with lower proportions in relapsing-remitting (0.19 [95%-CI 0.13-0.27]) compared to progressive MS (0.39 [95%-CI 0.30-0.49], p = 0.002) and higher proportions in studies imaging at 7 T (0.79 [95%-CI 0.64-0.89]) compared to lower field strengths (0.21 [95%-CI 0.15-0.29], p < 0.001). LME in MS was associated with longer disease duration (mean difference 2.2 years [95%-CI 0.2-4.2], p = 0.03), higher Expanded Disability Status Scale (mean difference 0.6 points [95%-CI 0.2-1.0], p = 0.006), higher T1 (mean difference 1.6 ml [95%-CI 0.1-3.0], p = 0.04) and T2 lesion load (mean difference 5.9 ml [95%-CI 3.2-8.6], p < 0.001), and lower cortical volume (mean difference -21.3 ml [95%-CI -34.7--7.9], p = 0.002). CONCLUSIONS: Our study provides high-grade evidence for the substantial presence of LME in MS and a comprehensive panel of other neurological diseases. Our data could facilitate differential diagnosis of LME in clinical settings. Additionally, our meta-analysis corroborates that LME is associated with key clinical and imaging features of MS. PROSPERO No: CRD42021235026.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Enfermedades del Sistema Nervioso , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Enfermedades del Sistema Nervioso/diagnóstico por imagen
9.
Brain ; 145(2): 426-440, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-34791056

RESUMEN

Progressive multifocal leukoencephalopathy (PML) is an opportunistic infection of the CNS caused by the JC virus, which infects white and grey matter cells and leads to irreversible demyelination and neuroaxonal damage. Brain MRI, in addition to the clinical presentation and demonstration of JC virus DNA either in the CSF or by histopathology, is an important tool in the detection of PML. In clinical practice, standard MRI pulse sequences are utilized for screening, diagnosis and monitoring of PML, but validated imaging-based outcome measures for use in prospective, interventional clinical trials for PML have yet to be established. We review the existing literature regarding the use of MRI and PET in PML and discuss the implications of PML histopathology for neuroradiology. MRI not only demonstrates the localization and extent of PML lesions, but also mirrors the tissue destruction, ongoing viral spread, and resulting inflammation. Finally, we explore the potential for imaging measures to serve as an outcome in PML clinical trials and provide recommendations for current and future imaging outcome measure development in this area.


Asunto(s)
Virus JC , Leucoencefalopatía Multifocal Progresiva , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Virus JC/genética , Leucoencefalopatía Multifocal Progresiva/diagnóstico por imagen , Leucoencefalopatía Multifocal Progresiva/tratamiento farmacológico , Imagen por Resonancia Magnética , Estudios Prospectivos
10.
Lancet Neurol ; 20(8): 639-652, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34302788

RESUMEN

BACKGROUND: Progressive multifocal leukoencephalopathy, a rare disease of the CNS caused by JC virus and occurring in immunosuppressed people, is typically fatal unless adaptive immunity is restored. JC virus is a member of the human polyomavirus family and is closely related to the BK virus. We hypothesised that use of partly HLA-matched donor-derived BK virus-specific T cells for immunotherapy in progressive multifocal leukoencephalopathy would be feasible and safe. METHODS: We did an open-label, single-cohort pilot study in patients (aged 18 years or older) with clinically definite progressive multifocal leukoencephalopathy and disease progression in the previous month at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Overlapping peptide libraries derived from large T antigen and major capsid protein VP1 of BK virus with high sequence homology to JC virus counterparts were used to generate polyomavirus-specific T cells cross-recognising JC virus antigens. Polyomavirus-specific T cells were manufactured from peripheral blood mononuclear cells of first-degree relative donors aged 18 years or older. These cells were administered to patients by intravenous infusion at 1 × 106 polyomavirus-specific T cells per kg, followed by up to two additional infusions at 2 × 106 polyomavirus-specific T cells per kg. The primary endpoints were feasibility (no manufacturing failure based on meeting release criteria, achieving adequate numbers of cell product for clinical use, and showing measurable antiviral activity) and safety in all patients. The safety monitoring period was 28 days after each infusion. Patients were followed up with serial MRI for up to 12 months after the final infusion. This trial is registered at ClinicalTrials.gov, NCT02694783. FINDINGS: Between April 7, 2016, and Oct 19, 2018, 26 patients were screened, of whom 12 were confirmed eligible and received treatment derived from 14 matched donors. All administered polyomavirus-specific T cells met the release criteria and recognised cognate antigens in vitro. 12 patients received at least one infusion, ten received at least two, and seven received a total of three infusions. The median on-study follow-up was 109·5 days (range 23-699). All infusions were tolerated well, and no serious treatment-related adverse events were observed. Seven patients survived progressive multifocal leukoencephalopathy for longer than 1 year after the first infusion, whereas five died of progressive multifocal leukoencephalopathy within 3 months. INTERPRETATION: We showed that generation of polyomavirus-specific T cells from healthy related donors is feasible, and these cells can be safely used as an infusion for adoptive immunotherapy of progressive multifocal leukoencephalopathy. Although not powered to assess efficacy, our data provide additional support for this strategy as a potential life-saving therapy for some patients. FUNDING: Intramural Research Program of the National Institute of Neurological Disorders and Stroke of the NIH.


Asunto(s)
Virus BK/inmunología , Inmunoterapia/métodos , Leucoencefalopatía Multifocal Progresiva/terapia , Linfocitos T/inmunología , Adulto , Anciano , Donantes de Sangre , Estudios de Cohortes , Determinación de Punto Final , Estudios de Factibilidad , Femenino , Humanos , Inmunoterapia/efectos adversos , Virus JC/inmunología , Leucoencefalopatía Multifocal Progresiva/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Proyectos Piloto , Análisis de Supervivencia , Resultado del Tratamiento , Adulto Joven
11.
Neurology ; 96(14): e1823-e1834, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33637630

RESUMEN

OBJECTIVE: To test the hypothesis that brain white matter hyperintensities (WMH) are more common in people living with HIV (PLWH), even in the setting of well-controlled infection, and to identify clinical measures that correlate with these abnormalities. METHODS: Research brain MRI scans, acquired within longitudinal studies evaluating neurocognitive outcomes, were reviewed to determine WMH load using the Fazekas visual rating scale in PLWH with well-controlled infection (antiretroviral therapy for at least 1 year and plasma viral load <200 copies/mL) and in sociodemographically matched controls without HIV (CWOH). The primary outcome measure of this cross-sectional analysis was increased WMH load, determined by total Fazekas score ≥2. Multiple logistic regression analysis was performed to evaluate the effect of HIV serostatus on WMH load and to identify MRI, CSF, and clinical variables that associate with WMH in the PLWH group. RESULTS: The study included 203 PLWH and 58 CWOH who completed a brain MRI scan between April 2014 and March 2019. The multiple logistic regression analysis, with age and history of tobacco use as covariates, showed that the adjusted odds ratio of the PLWH group for increased WMH load is 3.7 (95% confidence interval 1.8-7.5; p = 0.0004). For the PLWH group, increased WMH load was associated with older age, male sex, tobacco use, hypertension, and hepatitis C virus coinfection, and also with the presence of measurable tumor necrosis factor α in CSF. CONCLUSION: Our results suggest that HIV serostatus affects the extent of brain WMH. This effect is mainly associated with aging and modifiable comorbidities.


Asunto(s)
Encéfalo/patología , Infecciones por VIH/patología , Leucoaraiosis/patología , Sustancia Blanca/patología , Adulto , Estudios Transversales , Femenino , Humanos , Leucoaraiosis/epidemiología , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Factores de Riesgo
12.
Nat Rev Neurol ; 17(1): 37-51, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33219338

RESUMEN

Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments - most notably natalizumab for multiple sclerosis - have led to a surge of iatrogenic PML. The spectrum of presentations of JCV-related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases.


Asunto(s)
Traslado Adoptivo/métodos , Virus JC , Leucoencefalopatía Multifocal Progresiva/virología , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Leucoencefalopatía Multifocal Progresiva/tratamiento farmacológico , Linfocitos T
13.
Neuroimage Clin ; 28: 102412, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32961401

RESUMEN

OBJECTIVES: In multiple sclerosis (MS), the presence of a paramagnetic rim at the edge of non-gadolinium-enhancing lesions indicates perilesional chronic inflammation. Patients featuring a higher paramagnetic rim lesion burden tend to have more aggressive disease. The objective of this study was to develop and evaluate a convolutional neural network (CNN) architecture (RimNet) for automated detection of paramagnetic rim lesions in MS employing multiple magnetic resonance (MR) imaging contrasts. MATERIALS AND METHODS: Imaging data were acquired at 3 Tesla on three different scanners from two different centers, totaling 124 MS patients, and studied retrospectively. Paramagnetic rim lesion detection was independently assessed by two expert raters on T2*-phase images, yielding 462 rim-positive (rim+) and 4857 rim-negative (rim-) lesions. RimNet was designed using 3D patches centered on candidate lesions in 3D-EPI phase and 3D FLAIR as input to two network branches. The interconnection of branches at both the first network blocks and the last fully connected layers favors the extraction of low and high-level multimodal features, respectively. RimNet's performance was quantitatively evaluated against experts' evaluation from both lesion-wise and patient-wise perspectives. For the latter, patients were categorized based on a clinically relevant threshold of 4 rim+ lesions per patient. The individual prediction capabilities of the images were also explored and compared (DeLong test) by testing a CNN trained with one image as input (unimodal). RESULTS: The unimodal exploration showed the superior performance of 3D-EPI phase and 3D-EPI magnitude images in the rim+/- classification task (AUC = 0.913 and 0.901), compared to the 3D FLAIR (AUC = 0.855, Ps < 0.0001). The proposed multimodal RimNet prototype clearly outperformed the best unimodal approach (AUC = 0.943, P < 0.0001). The sensitivity and specificity achieved by RimNet (70.6% and 94.9%, respectively) are comparable to those of experts at the lesion level. In the patient-wise analysis, RimNet performed with an accuracy of 89.5% and a Dice coefficient (or F1 score) of 83.5%. CONCLUSIONS: The proposed prototype showed promising performance, supporting the usage of RimNet for speeding up and standardizing the paramagnetic rim lesions analysis in MS.


Asunto(s)
Esclerosis Múltiple , Encéfalo/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Estudios Retrospectivos
14.
Neuroimage ; 223: 117285, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32828923

RESUMEN

PURPOSE: To perform magnetic resonance microscopy (MRM) on human cortex and a cortical lesion as well as the adjacent normal appearing white matter. To shed light on the origins of MRI contrast by comparison with histochemical and immunostaining. METHODS: 3D MRM at a nominal isotropic resolution of 15 and 18 µm was performed on 2 blocks of tissue from the brain of a 77-year-old man who had MS for 47 years. One block contained normal appearing cortical gray matter (CN block) and adjacent normal appearing white matter (NAWM), and the other also included a cortical lesion (CL block). Postmortem ex-vivo MRI was performed at 11.7T using a custom solenoid coil and T2*-weighted 3D GRE sequence. Histochemical and immunostaining were done after paraffin embedding for iron, myelin, oligodendrocytes, neurons, blood vessels, macrophages and microglia, and astrocytes. RESULTS: MRM could identify individual iron-laden oligodendrocytes with high sensitivity (70% decrease in signal compared to surrounding) in CN and CL blocks, as well as some iron-laden activated macrophages and microglia. Iron-deficient oligodendrocytes seemed to cause relative increase in MRI signal within the cortical lesion. High concentration of myelin in the white matter was primarily responsible for its hypointense appearance relative to the cortex, however, signal variations within NAWM could be attributed to changes in density of iron-laden oligodendrocytes. CONCLUSION: Changes in iron accumulation within cells gave rise to imaging contrast seen between cortical lesions and normal cortex, as well as the patchy signal in NAWM. Densely packed myelin and collagen deposition also contributed to MRM signal changes. Even though we studied only one block each from normal appearing and cortical lesions, such studies can help better understand the origins of histopathological and microstructural correlates of MRI signal changes in multiple sclerosis and contextualize the interpretation of lower-resolution in vivo MRI scans.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/patología , Técnicas de Preparación Histocitológica/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Neuronas/patología , Anciano , Química Encefálica , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Hierro , Imagen por Resonancia Magnética , Masculino , Microscopía/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
15.
Neuroimage Clin ; 28: 102499, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33395989

RESUMEN

Progressive multifocal leukoencephalopathy (PML) is a rare opportunistic brain infection caused by the JC virus and associated with substantial morbidity and mortality. Accurate MRI assessment of PML lesion burden and brain parenchymal atrophy is of decisive value in monitoring the disease course and response to therapy. However, there are currently no validated automatic methods for quantification of PML lesion burden or associated parenchymal volume loss. Furthermore, manual brain or lesion delineations can be tedious, require the use of valuable time resources by radiologists or trained experts, and are often subjective. In this work, we introduce JCnet (named after the causative viral agent), an end-to-end, fully automated method for brain parenchymal and lesion segmentation in PML using consecutive 3D patch-based convolutional neural networks. The network architecture consists of multi-view feature pyramid networks with hierarchical residual learning blocks containing embedded batch normalization and nonlinear activation functions. The feature maps across the bottom-up and top-down pathways of the feature pyramids are merged, and an output probability membership generated through convolutional pathways, thus rendering the method fully convolutional. Our results show that this approach outperforms and improves longitudinal consistency compared to conventional, state-of-the-art methods of healthy brain and multiple sclerosis lesion segmentation, utilized here as comparators given the lack of available methods validated for use in PML. The ability to produce robust and accurate automated measures of brain atrophy and lesion segmentation in PML is not only valuable clinically but holds promise toward including standardized quantitative MRI measures in clinical trials of targeted therapies. Code is available at: https://github.com/omarallouz/JCnet.


Asunto(s)
Aprendizaje Profundo , Leucoencefalopatía Multifocal Progresiva , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Leucoencefalopatía Multifocal Progresiva/diagnóstico por imagen , Imagen por Resonancia Magnética , Redes Neurales de la Computación
16.
Immunity ; 52(1): 167-182.e7, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31883839

RESUMEN

Multiple sclerosis (MS) is a demyelinating, autoimmune disease of the central nervous system. While work has focused on myelin and axon loss in MS, less is known about mechanisms underlying synaptic changes. Using postmortem human MS tissue, a preclinical nonhuman primate model of MS, and two rodent models of demyelinating disease, we investigated synapse changes in the visual system. Similar to other neurodegenerative diseases, microglial synaptic engulfment and profound synapse loss were observed. In mice, synapse loss occurred independently of local demyelination and neuronal degeneration but coincided with gliosis and increased complement component C3, but not C1q, at synapses. Viral overexpression of the complement inhibitor Crry at C3-bound synapses decreased microglial engulfment of synapses and protected visual function. These results indicate that microglia eliminate synapses through the alternative complement cascade in demyelinating disease and identify a strategy to prevent synapse loss that may be broadly applicable to other neurodegenerative diseases. VIDEO ABSTRACT.


Asunto(s)
Complemento C3/inmunología , Encefalomielitis Autoinmune Experimental/patología , Microglía/patología , Esclerosis Múltiple/patología , Sinapsis/patología , Tálamo/patología , Anciano , Anciano de 80 o más Años , Animales , Callithrix , Línea Celular Tumoral , Complemento C3/antagonistas & inhibidores , Modelos Animales de Enfermedad , Femenino , Gliosis/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptores de Complemento 3b/metabolismo
17.
Ann Neurol ; 86(6): 878-884, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31600832

RESUMEN

OBJECTIVE: JC virus (JCV) infection is a lytic infection of oligodendrocytes in progressive multifocal leukoencephalopathy; less common forms of central nervous system manifestations associated with JCV infection include granule cell neuronopathy, encephalopathy, and meningitis. Presented is the first case of fatal JCV encephalopathy after immunosuppressive therapy that included ruxolitinib. METHODS: Postmortem analysis included next generation sequencing, Sanger sequencing, tissue immunohistochemistry, and formalin-fixed hemisphere 7T magnetic resonance imaging. RESULTS: JCV DNA isolated from postmortem tissue samples identified a novel 12bp insertion that altered the transcription site binding pattern in an otherwise "wild-type virus," which has long been thought to be the nonpathogenic form of JCV. Anti-VP1 staining demonstrated infection in cortical neurons, hippocampal neurons, and glial and endothelial cells. INTERPRETATION: This expands the spectrum of identified JCV diseases associated with broad-spectrum immunosuppression, including JAK-STAT inhibitors, and sheds light on an additional neurotropic virus strain of the archetype variety. ANN NEUROL 2019;86:878-884.


Asunto(s)
Encefalopatías/tratamiento farmacológico , Encefalopatías/genética , Virus JC/genética , Quinasas Janus/genética , Pirazoles/uso terapéutico , Adolescente , Secuencia de Bases , Encefalopatías/diagnóstico por imagen , Resultado Fatal , Femenino , Humanos , Virus JC/aislamiento & purificación , Nitrilos , Pirimidinas
18.
J Clin Invest ; 129(10): 4365-4376, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498148

RESUMEN

Inflammatory destruction of iron-rich myelin is characteristic of multiple sclerosis (MS). Although iron is needed for oligodendrocytes to produce myelin during development, its deposition has also been linked to neurodegeneration and inflammation, including in MS. We report perivascular iron deposition in multiple sclerosis lesions that was mirrored in 72 lesions from 13 marmosets with experimental autoimmune encephalomyelitis. Iron accumulated mainly inside microglia/macrophages from 6 weeks after demyelination. Consistently, expression of transferrin receptor, the brain's main iron-influx protein, increased as lesions aged. Iron was uncorrelated with inflammation and postdated initial demyelination, suggesting that iron is not directly pathogenic. Iron homeostasis was at least partially restored in remyelinated, but not persistently demyelinated, lesions. Taken together, our results suggest that iron accumulation in the weeks after inflammatory demyelination may contribute to lesion repair rather than inflammatory demyelination per se.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Hierro/metabolismo , Esclerosis Múltiple/metabolismo , Adulto , Anciano , Animales , Callithrix , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Modelos Neurológicos , Esclerosis Múltiple/patología , Receptores de Transferrina/metabolismo , Remielinización
19.
N Engl J Med ; 380(17): 1597-1605, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-30969503

RESUMEN

BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is an opportunistic brain infection that is caused by the JC virus and is typically fatal unless immune function can be restored. Programmed cell death protein 1 (PD-1) is a negative regulator of the immune response that may contribute to impaired viral clearance. Whether PD-1 blockade with pembrolizumab could reinvigorate anti-JC virus immune activity in patients with PML was unknown. METHODS: We administered pembrolizumab at a dose of 2 mg per kilogram of body weight every 4 to 6 weeks to eight adults with PML, each with a different underlying predisposing condition. Each patient received at least one dose but no more than three doses. RESULTS: Pembrolizumab induced down-regulation of PD-1 expression on lymphocytes in peripheral blood and in cerebrospinal fluid (CSF) in all eight patients. Five patients had clinical improvement or stabilization of PML accompanied by a reduction in the JC viral load in the CSF and an increase in in vitro CD4+ and CD8+ anti-JC virus activity. In the other three patients, no meaningful change was observed in the viral load or in the magnitude of antiviral cellular immune response, and there was no clinical improvement. CONCLUSIONS: Our findings are consistent with the hypothesis that in some patients with PML, pembrolizumab reduces JC viral load and increases CD4+ and CD8+ activity against the JC virus; clinical improvement or stabilization occurred in five of the eight patients who received pembrolizumab. Further study of immune checkpoint inhibitors in the treatment of PML is warranted. (Funded by the National Institutes of Health.).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Factores Inmunológicos/uso terapéutico , Virus JC/aislamiento & purificación , Leucoencefalopatía Multifocal Progresiva/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/fisiología , Líquido Cefalorraquídeo/virología , Regulación hacia Abajo , Femenino , Humanos , Síndrome Inflamatorio de Reconstitución Inmune/etiología , Leucoencefalopatía Multifocal Progresiva/diagnóstico por imagen , Leucoencefalopatía Multifocal Progresiva/inmunología , Recuento de Linfocitos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/metabolismo , Carga Viral , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
20.
Brain ; 141(6): 1637-1649, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688408

RESUMEN

Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Although it has been extensively studied, the proximate trigger of the immune response remains uncertain. Experimental autoimmune encephalomyelitis in the common marmoset recapitulates many radiological and pathological features of focal multiple sclerosis lesions in the cerebral white matter, unlike traditional experimental autoimmune encephalomyelitis in rodents. This provides an opportunity to investigate how lesions form as well as the relative timing of factors involved in lesion pathogenesis, especially during early stages of the disease. We used MRI to track experimental autoimmune encephalomyelitis lesions in vivo to determine their age, stage of development, and location, and we assessed the corresponding histopathology post-mortem. We focused on the plasma protein fibrinogen-a marker for blood-brain barrier leakage that has also been linked to a pathogenic role in inflammatory demyelinating lesion development. We show that fibrinogen has a specific spatiotemporal deposition pattern, apparently deriving from the central vein in early experimental autoimmune encephalomyelitis lesions <6 weeks old, and preceding both demyelination and visible gadolinium enhancement on MRI. Thus, fibrinogen leakage is one of the earliest detectable events in lesion pathogenesis. In slightly older lesions, fibrinogen is found inside microglia/macrophages, suggesting rapid phagocytosis. Quantification demonstrates positive correlation of fibrinogen deposition with accumulation of inflammatory cells, including microglia/macrophages and T cells. The peak of fibrinogen deposition coincides with the onset of demyelination and axonal loss. In samples from chronic multiple sclerosis cases, fibrinogen was found at the edge of chronic active lesions, which have ongoing demyelination and inflammation, but not in inactive lesions, suggesting that fibrinogen may play a role in sustained inflammation even in the chronic setting. In summary, our data support the notion that fibrinogen is a key player in the early pathogenesis, as well as sustained inflammation, of inflammatory demyelinating lesions.


Asunto(s)
Encéfalo/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Fibrinógeno/metabolismo , Esclerosis Múltiple/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Axones/metabolismo , Axones/patología , Encéfalo/diagnóstico por imagen , Proteínas de Unión al Calcio , Callithrix , Citocinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/virología , Femenino , Regulación de la Expresión Génica/fisiología , Herpesviridae , Humanos , Filamentos Intermedios/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Proteínas de Microfilamentos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/virología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA