Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Physiol ; 185(3): 1131-1147, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793909

RESUMEN

Rhizobial infection of legume roots during the development of nitrogen-fixing root nodules can occur intracellularly, through plant-derived infection threads traversing cells, or intercellularly, via bacterial entry between epidermal plant cells. Although it is estimated that around 25% of all legume genera are intercellularly infected, the pathways and mechanisms supporting this process have remained virtually unexplored due to a lack of genetically amenable legumes that exhibit this form of infection. In this study, we report that the model legume Lotus japonicus is infected intercellularly by the IRBG74 strain, recently proposed to belong to the Agrobacterium clade of the Rhizobiaceae. We demonstrate that the resources available for L. japonicus enable insight into the genetic requirements and fine-tuning of the pathway governing intercellular infection in this species. Inoculation of L. japonicus mutants shows that Ethylene-responsive factor required for nodulation 1 (Ern1) and Leu-rich Repeat Receptor-Like Kinase (RinRK1) are dispensable for intercellular infection in contrast to intracellular infection. Other symbiotic genes, including nod factor receptor 5 (NFR5), symbiosis receptor-like kinase (SymRK), Ca2+/calmodulin dependent kinase (CCaMK), exopolysaccharide receptor 3 (Epr3), Cyclops, nodule inception (Nin), nodulation signaling pathway 1 (Nsp1), nodulation signaling pathway 2 (Nsp2), cystathionine-ß-synthase (Cbs), and Vapyrin are equally important for both entry modes. Comparative RNAseq analysis of roots inoculated with IRBG74 revealed a distinctive transcriptome response compared with intracellular colonization. In particular, several cytokinin-related genes were differentially regulated. Corroborating this observation, cyp735A and ipt4 cytokinin biosynthesis mutants were significantly affected in their nodulation with IRBG74, whereas lhk1 cytokinin receptor mutants formed no nodules. These results indicate a differential requirement for cytokinin signaling during intercellular rhizobial entry and highlight distinct modalities of inter- and intracellular infection mechanisms in L. japonicus.


Asunto(s)
Lotus/metabolismo , Lotus/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rhizobium/patogenicidad , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
2.
Plant Biotechnol J ; 17(12): 2234-2245, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31022324

RESUMEN

Plant synthetic biology and cereal engineering depend on the controlled expression of transgenes of interest. Most engineering in plant species to date has relied heavily on the use of a few, well-established constitutive promoters to achieve high levels of expression; however, the levels of transgene expression can also be influenced by the use of codon optimization, intron-mediated enhancement and varying terminator sequences. Most of these alternative approaches for regulating transgene expression have only been tested in small-scale experiments, typically testing a single gene of interest. It is therefore difficult to interpret the relative importance of these approaches and to design engineering strategies that are likely to succeed in different plant species, particularly if engineering multigenic traits where the expression of each transgene needs to be precisely regulated. Here, we present data on the characterization of 46 promoters and 10 terminators in Medicago truncatula, Lotus japonicus, Nicotiana benthamiana and Hordeum vulgare, as well as the effects of codon optimization and intron-mediated enhancement on the expression of two transgenes in H. vulgare. We have identified a core set of promoters and terminators of relevance to researchers engineering novel traits in plant roots. In addition, we have shown that combining codon optimization and intron-mediated enhancement increases transgene expression and protein levels in barley. Based on our study, we recommend a core set of promoters and terminators for broad use and also propose a general set of principles and guidelines for those engineering cereal species.


Asunto(s)
Grano Comestible/genética , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Ingeniería Genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transgenes
3.
Plant Physiol ; 176(2): 1764-1772, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29187569

RESUMEN

Establishment of symbiotic nitrogen-fixation in legumes is regulated by the plant hormone ethylene, but it has remained unclear whether and how its biosynthesis is regulated by the symbiotic pathway. We established a sensitive ethylene detection system for Lotus japonicus and found that ethylene production increased as early as 6 hours after inoculation with Mesorhizobium loti This ethylene response was dependent on Nod factor production by compatible rhizobia. Analyses of nodulation mutants showed that perception of Nod factor was required for ethylene emission, while downstream transcription factors including CYCLOPS, NIN, and ERN1 were not required for this response. Activation of the nodulation signaling pathway in spontaneously nodulating mutants was also sufficient to elevate ethylene production. Ethylene signaling is controlled by EIN2, which is duplicated in L. japonicus We obtained a L. japonicus Ljein2a Ljein2b double mutant that exhibits complete ethylene insensitivity and confirms that these two genes act redundantly in ethylene signaling. Consistent with this redundancy, both LjEin2a and LjEin2b are required for negative regulation of nodulation and Ljein2a Ljein2b double mutants are hypernodulating and hyperinfected. We also identified an unexpected role for ethylene in the onset of nitrogen fixation, with the Ljein2a Ljein2b double mutant showing severely reduced nitrogen fixation. These results demonstrate that ethylene production is an early and sustained nodulation response that acts at multiple stages to regulate infection, nodule organogenesis, and nitrogen fixation in L. japonicus.


Asunto(s)
Etilenos/análisis , Lotus/fisiología , Mesorhizobium/fisiología , Fijación del Nitrógeno , Reguladores del Crecimiento de las Plantas/análisis , Transducción de Señal , Etilenos/metabolismo , Lotus/microbiología , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/fisiología , Plantones/microbiología , Plantones/fisiología , Simbiosis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Plant Biotechnol J ; 12(8): 1085-97, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25040127

RESUMEN

Legume plants regulate the number of nitrogen-fixing root nodules they form via a process called the Autoregulation of Nodulation (AON). Despite being one of the most economically important and abundantly consumed legumes, little is known about the AON pathway of common bean (Phaseolus vulgaris). We used comparative- and functional-genomic approaches to identify central components in the AON pathway of common bean. This includes identifying PvNARK, which encodes a LRR receptor kinase that acts to regulate root nodule numbers. A novel, truncated version of the gene was identified directly upstream of PvNARK, similar to Medicago truncatula, but not seen in Lotus japonicus or soybean. Two mutant alleles of PvNARK were identified that cause a classic shoot-controlled and nitrate-tolerant supernodulation phenotype. Homeologous over-expression of the nodulation-suppressive CLE peptide-encoding soybean gene, GmRIC1, abolished nodulation in wild-type bean, but had no discernible effect on PvNARK-mutant plants. This demonstrates that soybean GmRIC1 can function interspecifically in bean, acting in a PvNARK-dependent manner. Identification of bean PvRIC1, PvRIC2 and PvNIC1, orthologues of the soybean nodulation-suppressive CLE peptides, revealed a high degree of conservation, particularly in the CLE domain. Overall, our work identified four new components of bean nodulation control and a truncated copy of PvNARK, discovered the mutation responsible for two supernodulating bean mutants and demonstrated that soybean GmRIC1 can function in the AON pathway of bean.


Asunto(s)
Glycine max/genética , Homeostasis , Péptidos/genética , Phaseolus/fisiología , Proteínas de Plantas/genética , Rhizobium/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genómica , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Péptidos/metabolismo , Phaseolus/genética , Phaseolus/microbiología , Filogenia , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta , Plantas Modificadas Genéticamente , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Alineación de Secuencia , Análisis de Secuencia de ADN , Transducción de Señal
5.
Mol Plant Microbe Interact ; 24(5): 606-18, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21198362

RESUMEN

Systemic autoregulation of nodulation in legumes involves a root-derived signal (Q) that is perceived by a CLAVATA1-like leucine-rich repeat receptor kinase (e.g. GmNARK). Perception of Q triggers the production of a shoot-derived inhibitor that prevents further nodule development. We have identified three candidate CLE peptide-encoding genes (GmRIC1, GmRIC2, and GmNIC1) in soybean (Glycine max) that respond to Bradyrhizobium japonicum inoculation or nitrate treatment. Ectopic overexpression of all three CLE peptide genes in transgenic roots inhibited nodulation in a GmNARK-dependent manner. The peptides share a high degree of amino acid similarity in a 12-amino-acid C-terminal domain, deemed to represent the functional ligand of GmNARK. GmRIC1 was expressed early (12 h) in response to Bradyrhizobium-sp.-produced nodulation factor while GmRIC2 was induced later (48 to 72 h) but was more persistent during later nodule development. Neither GmRIC1 nor GmRIC2 were induced by nitrate. In contrast, GmNIC1 was strongly induced by nitrate (2 mM) treatment but not by Bradyrhizobium sp. inoculation and, unlike the other two GmCLE peptides, functioned locally to inhibit nodulation. Grafting demonstrated a requirement for root GmNARK activity for nitrate regulation of nodulation whereas Bradyrhizobium sp.-induced regulation was contingent on GmNARK function in the shoot.


Asunto(s)
Bradyrhizobium/genética , Glycine max/fisiología , Péptidos/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/fisiología , Secuencias de Aminoácidos , Bradyrhizobium/metabolismo , Bradyrhizobium/fisiología , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Nitratos/metabolismo , Péptidos/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Alineación de Secuencia , Análisis de Secuencia de ADN , Glycine max/genética , Glycine max/microbiología , Simbiosis
6.
Plant Signal Behav ; 4(9): 818-23, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19847106

RESUMEN

The gaseous hormone ethylene has multiple roles in plant development and responses to external cues. Among these is the regulation of "Rhizobium"-induced nodulation in legumes. Extensive descriptive literature exists, but has been expanded to allow more mechanistic analysis through the application of genetics. Both mutants and transgenics displaying ethylene insensitivity have now been described, suggesting an intimate interplay of ethylene response, plant development and nodulation.


Asunto(s)
Etilenos/metabolismo , Fabaceae/genética , Nodulación de la Raíz de la Planta/genética , Mutación/genética , Plantas Modificadas Genéticamente , Receptor Cross-Talk
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA