Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Pharmacol ; 12: 746470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630114

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive, highly proliferative, invasive brain tumor with a poor prognosis and low survival rate. The current standard of care for GBM is chemotherapy combined with radiation following surgical intervention, altogether with limited efficacy, since survival averages 18 months. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the dysregulation of numerous signaling pathways. Recently emerging therapies to precisely modulate tumor angiogenesis, inflammation, and oxidative stress are gaining attention as potential options to combat GBM. Using a mouse model of GBM, this study aims to investigate Avastin (suppressor of vascular endothelial growth factor and anti-angiogenetic treatment), LAU-0901 (a platelet-activating factor receptor antagonist that blocks pro-inflammatory signaling), Elovanoid; ELV, a novel pro-homeostatic lipid mediator that protects neural cell integrity and their combination as an alternative treatment for GBM. Female athymic nude mice were anesthetized with ketamine/xylazine, and luciferase-modified U87MG tumor cells were stereotactically injected into the right striatum. On post-implantation day 13, mice received one of the following: LAU-0901, ELV, Avastin, and all three compounds in combination. Bioluminescent imaging (BLI) was performed on days 13, 20, and 30 post-implantation. Mice were perfused for ex vivo MRI on day 30. Bioluminescent intracranial tumor growth percentage was reduced by treatments with LAU-0901 (43%), Avastin (77%), or ELV (86%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 72, 92, and 96%, respectively. Additionally, tumor reduction was confirmed by MRI on day 30, which shows a decrease in tumor volume by treatments with LAU-0901 (37%), Avastin (67%), or ELV (81.5%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 69, 78.7, and 88.6%, respectively. We concluded that LAU-0901 and ELV combined with Avastin exert a better inhibitive effect in GBM progression than monotherapy. To our knowledge, this is the first study that demonstrates the efficacy of these novel therapeutic regimens in a model of GBM and may provide the basis for future therapeutics in GBM patients.

2.
Cancer Metastasis Rev ; 40(3): 643-647, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34519960

RESUMEN

Glioblastoma multiforme (GBM) is the most invasive type of glial tumor with poor overall survival, despite advances in surgical resection, chemotherapy, and radiation. One of the main challenges in treating GBM is related to the tumor's location, complex and heterogeneous biology, and high invasiveness. To meet the demand for oxygen and nutrients, growing tumors induce new blood vessels growth. Antibodies directed against vascular endothelial growth factor (VEGF), which promotes angiogenesis, have been developed to limit tumor growth. Bevacizumab (Avastin), an anti-VEGF monoclonal antibody, is the first approved angiogenesis inhibitor with therapeutic promise. However, it has limited efficacy, likely due to adaptive mutations in GBM, leading to overall survival compared to the standard of care in GBM patients. Molecular connections between angiogenesis, inflammation, oxidative stress pathways, and the development of gliomas have been recognized. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the converging dysregulation of signaling pathways. While most GBM clinical trials focus on "anti-angiogenic" modalities, stimulating inflammation resolution is a novel host-centric therapeutic avenue. The selective therapeutic possibilities for targeting the tumor microenvironment, specifically angiogenic and inflammatory pathways expand. So, a combination of agents aiming to interfere with several mechanisms might be beneficial to improve outcomes. Our approach might also be combined with other therapies to enhance sustained effectiveness. Here, we discuss Suramab (anti-angiogenic), LAU-0901 (a platelet-activating factor receptor antagonist), Elovanoid (ELV; a novel lipid mediator), and their combination as potential alternatives to contain GBM growth and invasiveness.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Inhibidores de la Angiogénesis/uso terapéutico , Bevacizumab/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Homeostasis , Humanos , Neovascularización Patológica/tratamiento farmacológico , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/uso terapéutico
3.
PLoS One ; 14(7): e0219784, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31295328

RESUMEN

Oxytocin is involved in the regulation of social behaviors including parental behaviors in a variety of species. Oxytocin triggers social behaviors by binding to oxytocin receptors (OXTRs) in various parts of the brain. OXTRs are present in the preoptic area (POA) where hormone-sensitive sexually dimorphic nuclei exist. The present study was conducted to examine whether sex differences exist in the distribution of neurons expressing OXTRs in the POA. Using OXTR-Venus (an enhanced variant of yellow fluorescent protein) mice, the distribution of OXTR-Venus cells in the POA was compared between sexes. The total number of OXTR-Venus cells in the medial POA (MPOA) was significantly greater in females than in males. No detectable OXTR-Venus cells were observed in the anteroventral periventricular nucleus (AVPV) within the MPOA in most of the brain sections from males. We further examined the total number of OXTR-Venus cells in the AVPV and the rest of the MPOA between the sexes. The total number of OXTR-Venus cells in the AVPV in females (615 ± 43) was significantly greater than that in males (14 ± 2), whereas the total number of OXTR-Venus cells in the rest of the MPOA did not differ significantly between the sexes. Thus, the sexually dimorphic expression of OXTR-Venus specifically occurred in the AVPV, but not in the rest of the MPOA. We also examined whether the expression of OXTR in the AVPV is driven by the female gonadal hormone, estrogen. Immunocytochemistry and single-cell RT-PCR revealed the presence of the estrogen receptor α in OXTR-Venus cells in the female AVPV. Moreover, ovariectomy resulted in the absence of OXTR-Venus expression in the AVPV, whereas estrogen replacement therapy restored OXTR-Venus expression. These results demonstrate that the expression of OXTR in the AVPV is primarily female specific and estrogen dependent. The presence of the sexually dimorphic expression of OXTR in the AVPV suggests the involvement of OXTR neurons in the AVPV in the regulation of female-specific behavior and/or physiology.


Asunto(s)
Estrógenos/metabolismo , Neuronas/metabolismo , Oxitocina/genética , Receptores de Oxitocina/genética , Animales , Femenino , Regulación de la Expresión Génica/genética , Hipotálamo Anterior/crecimiento & desarrollo , Hipotálamo Anterior/metabolismo , Masculino , Ratones , Oxitocina/metabolismo , Caracteres Sexuales , Conducta Sexual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA