Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sci Transl Med ; 15(715): eadf8977, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37756377

RESUMEN

Chemotherapy-induced cognitive dysfunction (chemobrain) is an important adverse sequela of chemotherapy. Chemobrain has been identified by the National Cancer Institute as a poorly understood problem for which current management or treatment strategies are limited or ineffective. Here, we show that chemotherapy treatment with doxorubicin (DOX) in a breast cancer mouse model induced protein kinase A (PKA) phosphorylation of the neuronal ryanodine receptor/calcium (Ca2+) channel type 2 (RyR2), RyR2 oxidation, RyR2 nitrosylation, RyR2 calstabin2 depletion, and subsequent RyR2 Ca2+ leakiness. Chemotherapy was furthermore associated with abnormalities in brain glucose metabolism and neurocognitive dysfunction in breast cancer mice. RyR2 leakiness and cognitive dysfunction could be ameliorated by treatment with a small molecule Rycal drug (S107). Chemobrain was also found in noncancer mice treated with DOX or methotrexate and 5-fluorouracil and could be prevented by treatment with S107. Genetic ablation of the RyR2 PKA phosphorylation site (RyR2-S2808A) also prevented the development of chemobrain. Chemotherapy increased brain concentrations of the tumor necrosis factor-α and transforming growth factor-ß signaling, suggesting that increased inflammatory signaling might contribute to oxidation-driven biochemical remodeling of RyR2. Proteomics and Gene Ontology analysis indicated that the signaling downstream of chemotherapy-induced leaky RyR2 was linked to the dysregulation of synaptic structure-associated proteins that are involved in neurotransmission. Together, our study points to neuronal Ca2+ dyshomeostasis via leaky RyR2 channels as a potential mechanism contributing to chemobrain, warranting further translational studies.


Asunto(s)
Antineoplásicos , Deterioro Cognitivo Relacionado con la Quimioterapia , Disfunción Cognitiva , Animales , Ratones , Canal Liberador de Calcio Receptor de Rianodina , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Encéfalo , Doxorrubicina/efectos adversos
2.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333318

RESUMEN

SUMMARY: Zoledronic acid (ZA) prevents muscle weakness in mice with bone metastases; however, its role in muscle weakness in non-tumor-associated metabolic bone diseases and as an effective treatment modality for the prevention of muscle weakness associated with bone disorders, is unknown. We demonstrate the role of ZA-treatment on bone and muscle using a mouse model of accelerated bone remodeling, which represents the clinical manifestation of non-tumor associated metabolic bone disease. ZA increased bone mass and strength and rescued osteocyte lacunocanalicular organization. Short-term ZA treatment increased muscle mass, whereas prolonged, preventive treatment improved muscle mass and function. In these mice, muscle fiber-type shifted from oxidative to glycolytic and ZA restored normal muscle fiber distribution. By blocking TGFß release from bone, ZA improved muscle function, promoted myoblast differentiation and stabilized Ryanodine Receptor-1 calcium channel. These data demonstrate the beneficial effects of ZA in maintaining bone health and preserving muscle mass and function in a model of metabolic bone disease. Context and significance: TGFß is a bone regulatory molecule which is stored in bone matrix, released during bone remodeling, and must be maintained at an optimal level for the good health of the bone. Excess TGFß causes several bone disorders and skeletal muscle weakness. Reducing excess TGFß release from bone using zoledronic acid in mice not only improved bone volume and strength but also increased muscle mass, and muscle function. Progressive muscle weakness coexists with bone disorders, decreasing quality of life and increasing morbidity and mortality. Currently, there is a critical need for treatments improving muscle mass and function in patients with debilitating weakness. Zoledronic acid's benefit extends beyond bone and could also be useful in treating muscle weakness associated with bone disorders.

3.
Structure ; 30(7): 1025-1034.e4, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35580609

RESUMEN

The ryanodine receptor (RyR)/calcium release channel on the sarcoplasmic reticulum (SR) is required for excitation-contraction coupling in skeletal and cardiac muscle. Inherited mutations and stress-induced post-translational modifications result in an SR Ca2+ leak that causes skeletal myopathies, heart failure, and exercise-induced sudden death. A class of therapeutics known as Rycals prevent the RyR-mediated leak, are effective in preventing disease progression and restoring function in animal models, and are in clinical trials for patients with muscle and heart disorders. Using cryogenic-electron microscopy, we present a model of RyR1 with a 2.45-Å resolution before local refinement, revealing a binding site in the RY1&2 domain (3.10 Å local resolution), where the Rycal ARM210 binds cooperatively with ATP and stabilizes the closed state of RyR1.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
4.
Circ Arrhythm Electrophysiol ; 12(11): e007573, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31665913

RESUMEN

BACKGROUND: Obesity and diets high in saturated fat increase the risk of arrhythmias and sudden cardiac death. However, the molecular mechanisms are not well understood. We hypothesized that an increase in dietary saturated fat could lead to abnormalities of calcium homeostasis and heart rhythm by a NOX2 (NADPH oxidase 2)-dependent mechanism. METHODS: We investigated this hypothesis by feeding mice high-fat diets. In vivo heart rhythm telemetry, optical mapping, and isolated cardiac myocyte imaging were used to quantify arrhythmias, repolarization, calcium transients, and intracellular calcium sparks. RESULTS: We found that saturated fat activates NOX (NADPH oxidase), whereas polyunsaturated fat does not. The high saturated fat diet increased repolarization heterogeneity and ventricular tachycardia inducibility in perfused hearts. Pharmacological inhibition or genetic deletion of NOX2 prevented arrhythmogenic abnormalities in vivo during high statured fat diet and resulted in less inducible ventricular tachycardia. High saturated fat diet activates CaMK (Ca2+/calmodulin-dependent protein kinase) in the heart, which contributes to abnormal calcium handling, promoting arrhythmia. CONCLUSIONS: We conclude that NOX2 deletion or pharmacological inhibition prevents the arrhythmogenic effects of a high saturated fat diet, in part mediated by activation of CaMK. This work reveals a molecular mechanism linking cardiac metabolism to arrhythmia and suggests that NOX2 inhibitors could be a novel therapy for heart rhythm abnormalities caused by cardiac lipid overload.


Asunto(s)
Arritmias Cardíacas/etiología , Calcio/metabolismo , Dieta Alta en Grasa/efectos adversos , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 2/metabolismo , Estrés Oxidativo , Animales , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/metabolismo , Señalización del Calcio , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Ratones , Miocitos Cardíacos/patología , Oxidación-Reducción
5.
Acta Neuropathol ; 134(5): 749-767, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28631094

RESUMEN

The mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP +/- /PS1 +/-). RyR2 is depleted of calstabin2 (KFBP12.6) in the channel complex, resulting in endoplasmic reticular (ER) calcium (Ca2+) leak. RyR-mediated ER Ca2+ leak activates Ca2+-dependent signaling pathways, contributing to AD pathogenesis. Pharmacological (using a novel RyR stabilizing drug Rycal) or genetic rescue of the RyR2-mediated intracellular Ca2+ leak improved synaptic plasticity, normalized behavioral and cognitive functions and reduced Aß load. Genetically altered mice with congenitally leaky RyR2 exhibited premature and severe defects in synaptic plasticity, behavior and cognitive function. These data provide a mechanism underlying leaky RyR2 channels, which could be considered as potential AD therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Calcio/metabolismo , Trastornos del Conocimiento/metabolismo , Procesamiento Proteico-Postraduccional , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Enfermedad de Alzheimer/patología , Animales , Señalización del Calcio , Trastornos del Conocimiento/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Estrés Oxidativo/fisiología , Fosforilación , Reconocimiento en Psicología/fisiología , Retículo Sarcoplasmático/metabolismo
6.
J Biol Chem ; 292(24): 10153-10168, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28476886

RESUMEN

Alteration of ryanodine receptor (RyR)-mediated calcium (Ca2+) signaling has been reported in Alzheimer disease (AD) models. However, the molecular mechanisms underlying altered RyR-mediated intracellular Ca2+ release in AD remain to be fully elucidated. We report here that RyR2 undergoes post-translational modifications (phosphorylation, oxidation, and nitrosylation) in SH-SY5Y neuroblastoma cells expressing the ß-amyloid precursor protein (ßAPP) harboring the familial double Swedish mutations (APPswe). RyR2 macromolecular complex remodeling, characterized by depletion of the regulatory protein calstabin2, resulted in increased cytosolic Ca2+ levels and mitochondrial oxidative stress. We also report a functional interplay between amyloid ß (Aß), ß-adrenergic signaling, and altered Ca2+ signaling via leaky RyR2 channels. Thus, post-translational modifications of RyR occur downstream of Aß through a ß2-adrenergic signaling cascade that activates PKA. RyR2 remodeling in turn enhances ßAPP processing. Importantly, pharmacological stabilization of the binding of calstabin2 to RyR2 channels, which prevents Ca2+ leakage, or blocking the ß2-adrenergic signaling cascade reduced ßAPP processing and the production of Aß in APPswe-expressing SH-SY5Y cells. We conclude that targeting RyR-mediated Ca2+ leakage may be a therapeutic approach to treat AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Señalización del Calcio , Neuronas/enzimología , Procesamiento Proteico-Postraduccional , Receptores Adrenérgicos beta 2/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Mutación , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteolisis/efectos de los fármacos , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Proteínas de Unión a Tacrolimus/antagonistas & inhibidores , Proteínas de Unión a Tacrolimus/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-29312148

RESUMEN

Muscle weakness and cachexia are significant paraneoplastic syndromes of many advanced cancers. Osteolytic bone metastases are common in advanced breast cancer and are a major contributor to decreased survival, performance, and quality of life for patients. Pathologic fracture caused by osteolytic cancer in bone (OCIB) leads to a significant (32%) increased risk of death compared to patients without fracture. Since muscle weakness is linked to risk of falls which are a major cause of fracture, we have investigated skeletal muscle response to OCIB. Here, we show that a syngeneic mouse model of OCIB (4T1 mammary tumor cells) leads to cachexia and skeletal muscle weakness associated with oxidation of the ryanodine receptor and calcium (Ca2+) release channel (RyR1). Muscle atrophy follows known pathways via both myostatin signaling and expression of muscle-specific ubiquitin ligases, atrogin-1 and MuRF1. We have identified a mechanism for skeletal muscle weakness due to increased oxidative stress on RyR1 via NAPDH oxidases [NADPH oxidase 2 (Nox2) and NADPH oxidase 4 (Nox4)]. In addition, SMAD3 phosphorylation is higher in muscle from tumor-bearing mice, a critical step in the intracellular signaling pathway that transmits TGFß signaling to the nucleus. This is the first time that skeletal muscle weakness has been described in a syngeneic model of OCIB and represents a unique model system in which to study cachexia and changes in skeletal muscle.

8.
Nat Med ; 21(11): 1262-1271, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26457758

RESUMEN

Cancer-associated muscle weakness is a poorly understood phenomenon, and there is no effective treatment. Here we find that seven different mouse models of human osteolytic bone metastases-representing breast, lung and prostate cancers, as well as multiple myeloma-exhibited impaired muscle function, implicating a role for the tumor-bone microenvironment in cancer-associated muscle weakness. We found that transforming growth factor (TGF)-ß, released from the bone surface as a result of metastasis-induced bone destruction, upregulated NADPH oxidase 4 (Nox4), resulting in elevated oxidization of skeletal muscle proteins, including the ryanodine receptor and calcium (Ca(2+)) release channel (RyR1). The oxidized RyR1 channels leaked Ca(2+), resulting in lower intracellular signaling, which is required for proper muscle contraction. We found that inhibiting RyR1 leakage, TGF-ß signaling, TGF-ß release from bone or Nox4 activity improved muscle function in mice with MDA-MB-231 bone metastases. Humans with breast- or lung cancer-associated bone metastases also had oxidized skeletal muscle RyR1 that is not seen in normal muscle. Similarly, skeletal muscle weakness, increased Nox4 binding to RyR1 and oxidation of RyR1 were present in a mouse model of Camurati-Engelmann disease, a nonmalignant metabolic bone disorder associated with increased TGF-ß activity. Thus, pathological TGF-ß release from bone contributes to muscle weakness by decreasing Ca(2+)-induced muscle force production.


Asunto(s)
Neoplasias Óseas/metabolismo , Calcio/metabolismo , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Osteólisis/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Absorciometría de Fotón , Animales , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Señalización del Calcio , Síndrome de Camurati-Engelmann/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Células MCF-7 , Masculino , Ratones , Ratones Desnudos , Ratones SCID , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Contracción Muscular , Proteínas Musculares/metabolismo , Fuerza Muscular , Debilidad Muscular/etiología , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neoplasias/complicaciones , Neoplasias/patología , Osteólisis/diagnóstico por imagen , Osteólisis/etiología , Oxidación-Reducción , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Regulación hacia Arriba , Microtomografía por Rayos X
9.
Proc Natl Acad Sci U S A ; 111(42): 15250-5, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288763

RESUMEN

Age-related skeletal muscle dysfunction is a leading cause of morbidity that affects up to half the population aged 80 or greater. Here we tested the effects of increased mitochondrial antioxidant activity on age-dependent skeletal muscle dysfunction using transgenic mice with targeted overexpression of the human catalase gene to mitochondria (MCat mice). Aged MCat mice exhibited improved voluntary exercise, increased skeletal muscle specific force and tetanic Ca(2+) transients, decreased intracellular Ca(2+) leak and increased sarcoplasmic reticulum (SR) Ca(2+) load compared with age-matched wild type (WT) littermates. Furthermore, ryanodine receptor 1 (the sarcoplasmic reticulum Ca(2+) release channel required for skeletal muscle contraction; RyR1) from aged MCat mice was less oxidized, depleted of the channel stabilizing subunit, calstabin1, and displayed increased single channel open probability (Po). Overall, these data indicate a direct role for mitochondrial free radicals in promoting the pathological intracellular Ca(2+) leak that underlies age-dependent loss of skeletal muscle function. This study harbors implications for the development of novel therapeutic strategies, including mitochondria-targeted antioxidants for treatment of mitochondrial myopathies and other healthspan-limiting disorders.


Asunto(s)
Envejecimiento , Antioxidantes/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/patología , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Catalasa/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Oxígeno/metabolismo , Calidad de Vida , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Estrés Mecánico , Proteína 1A de Unión a Tacrolimus/metabolismo , Factores de Tiempo
10.
J Heart Lung Transplant ; 32(9): 925-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23953820

RESUMEN

BACKGROUND: In experimental heart failure animal models, remodeling of skeletal and cardiac muscle ryanodine receptors (RyR), including phosphorylation, S-nitrosylation and oxidation, have been reported to contribute to pathologic Ca2+ release, impaired muscle function and fatigue. However, it is not known whether similar remodeling of RyR1 in skeletal muscle occurs in patients with heart failure, and if this is associated with impairment of physical activity. METHODS: We studied 8 sedentary patients with New York Heart Association (NYHA) Class III heart failure and 7 age-matched, healthy, but sedentary controls. All heart failure patients had NYHA Class III and peak VO2, echocardiography and NT-proBNP data consistent with moderate to severe heart failure. The age-matched controls included were allowed hypertension but sub-clinical heart failure was to have been ruled out by normal peak VO2, echocardiography and NT-proBNP. RESULTS: Exercise capacity (VO2max) differed by almost 2-fold between heart failure patients and age-matched controls. Compared with controls, skeletal muscle RyR1 in heart failure patients was excessively phosphorylated, S-nitrosylated and oxidized. Furthermore, RyR1 from heart failure patients was depleted of its stabilizing protein FK 506-binding protein 12 (FKBP12, or calstabin1). CONCLUSIONS: For the first time we show that skeletal muscle RyR1 from human heart failure is post-translationally modified, which corroborates previous data from experimental animal studies. This indicates pathologic Ca2+ release as a potential mechanism behind skeletal muscle weakness and impaired exercise tolerance in patients with heart failure and suggests a potential target for pharmacologic intervention.


Asunto(s)
Tolerancia al Ejercicio/fisiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Anciano , Biopsia , Estudios de Casos y Controles , Comorbilidad , Ecocardiografía , Femenino , Insuficiencia Cardíaca/epidemiología , Humanos , Hipertensión/epidemiología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Péptido Natriurético Encefálico/metabolismo , Consumo de Oxígeno/fisiología , Fragmentos de Péptidos/metabolismo , Índice de Severidad de la Enfermedad
12.
J Physiol ; 590(24): 6381-7, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23070698

RESUMEN

Enhancement of contractile force (inotropy) occurs in skeletal muscle following neuroendocrine release of catecholamines and activation of muscle ß-adrenergic receptors. Despite extensive study, the molecular mechanism underlying the inotropic response in skeletal muscle is not well understood. Here we show that phosphorylation of a single serine residue (S2844) in the sarcoplasmic reticulum (SR) Ca(2+) release channel/ryanodine receptor type 1 (RyR1) by protein kinase A (PKA) is critical for skeletal muscle inotropy. Treating fast twitch skeletal muscle from wild-type mice with the ß-receptor agonist isoproterenol (isoprenaline) increased RyR1 PKA phosphorylation, twitch Ca(2+) and force generation. In contrast, the enhanced muscle Ca(2+), force and in vivo muscle strength responses following isoproterenol stimulation were abrogated in RyR1-S2844A mice in which the serine in the PKA site in RyR1 was replaced with alanine. These data suggest that the molecular mechanism underlying skeletal muscle inotropy requires enhanced SR Ca(2+) release due to PKA phosphorylation of S2844 in RyR1.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Isoproterenol/farmacología , Contracción Muscular/efectos de los fármacos , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musculares de Contracción Rápida/enzimología , Fosforilación , Mutación Puntual , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Serina , Factores de Tiempo
13.
Skelet Muscle ; 2(1): 9, 2012 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-22640601

RESUMEN

BACKGROUND: Disruption of the sarcolemma-associated dystrophin-glycoprotein complex underlies multiple forms of muscular dystrophy, including Duchenne muscular dystrophy and sarcoglycanopathies. A hallmark of these disorders is muscle weakness. In a murine model of Duchenne muscular dystrophy, mdx mice, cysteine-nitrosylation of the calcium release channel/ryanodine receptor type 1 (RyR1) on the skeletal muscle sarcoplasmic reticulum causes depletion of the stabilizing subunit calstabin1 (FKBP12) from the RyR1 macromolecular complex. This results in a sarcoplasmic reticular calcium leak via defective RyR1 channels. This pathological intracellular calcium leak contributes to reduced calcium release and decreased muscle force production. It is unknown whether RyR1 dysfunction occurs also in other muscular dystrophies. METHODS: To test this we used a murine model of Limb-Girdle muscular dystrophy, deficient in ß-sarcoglycan (Sgcb-/-). RESULTS: Skeletal muscle RyR1 from Sgcb-/- deficient mice were oxidized, nitrosylated, and depleted of the stabilizing subunit calstabin1, which was associated with increased open probability of the RyR1 channels. Sgcb-/- deficient mice exhibited decreased muscle specific force and calcium transients, and displayed reduced exercise capacity. Treating Sgcb-/- mice with the RyR stabilizing compound S107 improved muscle specific force, calcium transients, and exercise capacity. We have previously reported similar findings in mdx mice, a murine model of Duchenne muscular dystrophy. CONCLUSIONS: Our data suggest that leaky RyR1 channels may underlie multiple forms of muscular dystrophy linked to mutations in genes encoding components of the dystrophin-glycoprotein complex. A common underlying abnormality in calcium handling indicates that pharmacological targeting of dysfunctional RyR1 could be a novel therapeutic approach to improve muscle function in Limb-Girdle and Duchenne muscular dystrophies.

14.
FASEB J ; 26(3): 1009-17, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22090316

RESUMEN

Recent studies indicate that members of the multidrug-resistance protein (MRP) family belonging to ATP binding cassette type C (ABCC) membrane proteins extrude cyclic nucleotides from various cell types. This study aimed to determine whether MRP proteins regulate cardiac cAMP homeostasis. Here, we demonstrate that MRP4 is the predominant isoform present at the plasma membrane of cardiacmyocytes and that it mediates the efflux of cAMP in these cells. MRP4-deficient mice displayed enhanced cardiac myocyte cAMP formation, contractility, and cardiac hypertrophy at 9 mo of age, an effect that was compensated transiently by increased phosphodiesterase expression at young age. These findings suggest that cAMP extrusion via MRP4 acts together with phosphodiesterases to control cAMP levels in cardiac myocytes.


Asunto(s)
AMP Cíclico/metabolismo , Homeostasis , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Miocitos Cardíacos/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Animales , Western Blotting , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/genética , Cardiomegalia/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Ecocardiografía , Femenino , Regulación Enzimológica de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Contracción Miocárdica/genética , Contracción Miocárdica/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
15.
Cell Metab ; 14(2): 196-207, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21803290

RESUMEN

Age-related loss of muscle mass and force (sarcopenia) contributes to disability and increased mortality. Ryanodine receptor 1 (RyR1) is the skeletal muscle sarcoplasmic reticulum calcium release channel required for muscle contraction. RyR1 from aged (24 months) rodents was oxidized, cysteine-nitrosylated, and depleted of the channel-stabilizing subunit calstabin1, compared to RyR1 from younger (3-6 months) adults. This RyR1 channel complex remodeling resulted in "leaky" channels with increased open probability, leading to intracellular calcium leak in skeletal muscle. Similarly, 6-month-old mice harboring leaky RyR1-S2844D mutant channels exhibited skeletal muscle defects comparable to 24-month-old wild-type mice. Treating aged mice with S107 stabilized binding of calstabin1 to RyR1, reduced intracellular calcium leak, decreased reactive oxygen species (ROS), and enhanced tetanic Ca(2+) release, muscle-specific force, and exercise capacity. Taken together, these data indicate that leaky RyR1 contributes to age-related loss of muscle function.


Asunto(s)
Envejecimiento , Calcio/metabolismo , Debilidad Muscular/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcopenia/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/patología , Mitocondrias/fisiología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/sangre , Proteínas de Unión a Tacrolimus/deficiencia , Proteínas de Unión a Tacrolimus/metabolismo , Tiazepinas/farmacología
16.
Proc Natl Acad Sci U S A ; 108(32): 13258-63, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21788490

RESUMEN

Myocardial ischemic disease is the major cause of death worldwide. After myocardial infarction, reperfusion of infracted heart has been an important objective of strategies to improve outcomes. However, cardiac ischemia/reperfusion (I/R) is characterized by inflammation, arrhythmias, cardiomyocyte damage, and, at the cellular level, disturbance in Ca(2+) and redox homeostasis. In this study, we sought to determine how acute inflammatory response contributes to reperfusion injury and Ca(2+) homeostasis disturbance after acute ischemia. Using a rat model of I/R, we show that circulating levels of TNF-α and cardiac caspase-8 activity were increased within 6 h of reperfusion, leading to myocardial nitric oxide and mitochondrial ROS production. At 1 and 15 d after reperfusion, caspase-8 activation resulted in S-nitrosylation of the RyR2 and depletion of calstabin2 from the RyR2 complex, resulting in diastolic sarcoplasmic reticulum (SR) Ca(2+) leak. Pharmacological inhibition of caspase-8 before reperfusion with Q-LETD-OPh or prevention of calstabin2 depletion from the RyR2 complex with the Ca(2+) channel stabilizer S107 ("rycal") inhibited the SR Ca(2+) leak, reduced ventricular arrhythmias, infarct size, and left ventricular remodeling after 15 d of reperfusion. TNF-α-induced caspase-8 activation leads to leaky RyR2 channels that contribute to myocardial remodeling after I/R. Thus, early prevention of SR Ca(2+) leak trough normalization of RyR2 function is cardioprotective.


Asunto(s)
Caspasa 8/metabolismo , Ventrículos Cardíacos/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Activación Enzimática , Fluorescencia , Daño por Reperfusión Miocárdica/sangre , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Fenantridinas/metabolismo , Ratas , Ratas Endogámicas WKY , Factor de Necrosis Tumoral alfa/sangre , Remodelación Ventricular
17.
Circ Res ; 109(3): 281-90, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21659649

RESUMEN

RATIONALE: Mutations in the cardiac type 2 ryanodine receptor (RyR2) have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT-associated RyR2 mutations cause fatal ventricular arrhythmias in young individuals during ß-adrenergic stimulation. OBJECTIVE: This study sought to determine the effects of a novel RyR2-G230C mutation and whether this mutation and RyR2-P2328S alter the sensitivity of the channel to luminal calcium (Ca(2+)). METHODS AND RESULTS: Functional characterizations of recombinant human RyR2-G230C channels were performed under conditions mimicking stress. Human RyR2 mutant channels were generated by site-directed mutagenesis and heterologously expressed in HEK293 cells together with calstabin2. RyR2 channels were measured to examine the regulation of the channels by cytosolic versus luminal sarcoplasmic reticulum Ca(2+). A 50-year-old white man with repeated syncopal episodes after exercise had a cardiac arrest and harbored the mutation RyR2-G230C. cAMP-dependent protein kinase-phosphorylated RyR2-G230C channels exhibited a significantly higher open probability at diastolic Ca(2+) concentrations, associated with a depletion of calstabin2. The luminal Ca(2+) sensitivities of RyR2-G230C and RyR2-P2328S channels were WT-like. CONCLUSIONS: The RyR2-G230C mutant exhibits similar biophysical defects compared with previously characterized CPVT mutations: decreased binding of the stabilizing subunit calstabin2 and a leftward shift in the Ca(2+) dependence for activation under conditions that simulate exercise, consistent with a "leaky" channel. Both RyR2-G230C and RyR2-P2328S channels exhibit normal luminal Ca(2+) activation. Thus, diastolic sarcoplasmic reticulum Ca(2+) leak caused by reduced calstabin2 binding and a leftward shift in the Ca(2+) dependence for activation by diastolic levels of cytosolic Ca(2+) is a common mechanism underlying CPVT.


Asunto(s)
Calcio/fisiología , Muerte Súbita Cardíaca , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Taquicardia Ventricular/fisiopatología , Catecolaminas/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Citosol/fisiología , Diástole/fisiología , Electrocardiografía , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Masculino , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Fenotipo , Mutación Puntual , Proteínas Recombinantes/genética , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética , Proteínas de Unión a Tacrolimus/fisiología
18.
J Clin Invest ; 120(12): 4375-87, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21099115

RESUMEN

Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor/calcium release channel (RyR2) is thought to play a role in heart failure (HF) progression. Inhibition of this leak is an emerging therapeutic strategy. To explore the role of chronic PKA phosphorylation of RyR2 in HF pathogenesis and treatment, we generated a knockin mouse with aspartic acid replacing serine 2808 (mice are referred to herein as RyR2-S2808D+/+ mice). This mutation mimics constitutive PKA hyperphosphorylation of RyR2, which causes depletion of the stabilizing subunit FKBP12.6 (also known as calstabin2), resulting in leaky RyR2. RyR2-S2808D+/+ mice developed age-dependent cardiomyopathy, elevated RyR2 oxidation and nitrosylation, reduced SR Ca2+ store content, and increased diastolic SR Ca2+ leak. After myocardial infarction, RyR2-S2808D+/+ mice exhibited increased mortality compared with WT littermates. Treatment with S107, a 1,4-benzothiazepine derivative that stabilizes RyR2-calstabin2 interactions, inhibited the RyR2-mediated diastolic SR Ca2+ leak and reduced HF progression in WT and RyR2-S2808D+/+ mice. In contrast, ß-adrenergic receptor blockers improved cardiac function in WT but not in RyR2-S2808D+/+ mice.Thus, chronic PKA hyperphosphorylation of RyR2 results in a diastolic leak that causes cardiac dysfunction. Reversing PKA hyperphosphorylation of RyR2 is an important mechanism underlying the therapeutic action of ß-blocker therapy in HF.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Insuficiencia Cardíaca/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sustitución de Aminoácidos , Animales , Señalización del Calcio/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Ratones , Ratones Mutantes , Ratones Transgénicos , Mutación Missense , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo
19.
J Clin Invest ; 120(12): 4388-98, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21099118

RESUMEN

During the classic "fight-or-flight" stress response, sympathetic nervous system activation leads to catecholamine release, which increases heart rate and contractility, resulting in enhanced cardiac output. Catecholamines bind to ß-adrenergic receptors, causing cAMP generation and activation of PKA, which phosphorylates multiple targets in cardiac muscle, including the cardiac ryanodine receptor/calcium release channel (RyR2) required for muscle contraction. PKA phosphorylation of RyR2 enhances channel activity by sensitizing the channel to cytosolic calcium (Ca²+). Here, we found that mice harboring RyR2 channels that cannot be PKA phosphorylated (referred to herein as RyR2-S2808A+/+ mice) exhibited blunted heart rate and cardiac contractile responses to catecholamines (isoproterenol). The isoproterenol-induced enhancement of ventricular myocyte Ca²+ transients and fractional shortening (contraction) and the spontaneous beating rate of sinoatrial nodal cells were all blunted in RyR2-S2808A+/+ mice. The blunted cardiac response to catecholamines in RyR2-S2808A+/+ mice resulted in impaired exercise capacity. RyR2-S2808A+/+ mice were protected against chronic catecholaminergic-induced cardiac dysfunction. These studies identify what we believe to be new roles for PKA phosphorylation of RyR2 in both the heart rate and contractile responses to acute catecholaminergic stimulation.


Asunto(s)
Corazón/fisiología , Miocardio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sustitución de Aminoácidos , Animales , Señalización del Calcio , Catecolaminas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Ratones , Ratones Mutantes , Ratones Transgénicos , Mutación Missense , Contracción Miocárdica , Fosforilación , Receptores Adrenérgicos beta/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Estrés Fisiológico
20.
FASEB J ; 22(11): 3919-24, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18687806

RESUMEN

When acutely exposed to a cold environment, mammals shiver to generate heat. During prolonged cold exposure, shivering is replaced by adaptive adrenergic nonshivering thermogenesis with increased heat production in brown adipose tissue due to activation of uncoupling protein-1 (UCP1). This cold acclimation is associated with chronically increased sympathetic stimulation of skeletal muscle, which may increase the sarcoplasmic reticulum (SR) Ca(2+) leak via destabilized ryanodine receptor 1 (RyR1) channel complexes. Here, we use genetically engineered UCP1-deficient (UCP1-KO) mice that rely completely on shivering in the cold. We examine soleus muscle, which participates in shivering, and flexor digitorum brevis (FDB) muscle, a distal and superficial muscle that does not shiver. Soleus muscles of cold-acclimated UCP1-KO mice exhibited severe RyR1 PKA hyperphosphorylation and calstabin1 depletion, as well as markedly decreased SR Ca(2+) release and force during contractions. In stark contrast, the RyR1 channel complexes were little affected, and Ca(2+) and force were not decreased in FDB muscles of cold-acclimated UCP1-KO mice. These results indicate that activation of UCP1-mediated heat production in brown adipose tissue during cold exposure reduces the necessity for shivering and thus prevents the development of severe dysfunction in shivering muscles.


Asunto(s)
Aclimatación/fisiología , Calcio/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Termogénesis/fisiología , Tejido Adiposo Pardo/metabolismo , Animales , Frío , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Canales Iónicos/genética , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Musculares/genética , Fosforilación , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Tiritona/fisiología , Proteína Desacopladora 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA