Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167133, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531482

RESUMEN

The cytosolic dipeptidyl-aminopeptidase 9 (DPP9) cleaves protein N-termini post-proline or -alanine. Our analysis of DPP9 mRNA expression from the TCGA 'breast cancer' data set revealed that low/intermediate DPP9 levels are associated with poor overall survival of breast cancer patients. To unravel the impact of DPP9 on breast cancer development and progression, the transgenic MMTV-PyMT mouse model of metastasizing breast cancer was used. In addition, tissue- and time-controlled genetic deletion of DPP9 by the Cre-loxP recombination system was done. Despite a delay of tumor onset, a higher number of lung metastases were measured in DPP9-deficient mice compared to controls. In human mammary epithelial cells with oncogenic RAS pathway activation, DPP9 deficiency delayed tumorigenic transformation and accelerated TGF-ß1 induced epithelial-to-mesenchymal transition (EMT) of spheroids. For further analysis of the mechanism, primary breast tumor cells were isolated from the MMTV-PyMT model. DPP9 deficiency in these cells caused cancer cell migration and invasion accompanied by EMT. In absence of DPP9, the EMT transcription factor ZEB1 was stabilized due to insufficient degradation by the proteasome. In summary, low expression of DPP9 appears to decelerate mammary tumorigenesis but favors EMT and metastasis, which establishes DPP9 as a novel dynamic regulator of breast cancer initiation and progression.


Asunto(s)
Neoplasias de la Mama , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Transición Epitelial-Mesenquimal , Animales , Humanos , Femenino , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Ratones , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/metabolismo , Metástasis de la Neoplasia , Regulación Neoplásica de la Expresión Génica , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Línea Celular Tumoral , Ratones Noqueados , Ratones Transgénicos
2.
JCI Insight ; 9(3)2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329128

RESUMEN

The glucocerebrosidase (GCase) encoded by the GBA1 gene hydrolyzes glucosylceramide (GluCer) to ceramide and glucose in lysosomes. Homozygous or compound heterozygous GBA1 mutations cause the lysosomal storage disease Gaucher disease (GD) due to severe loss of GCase activity. Loss-of-function variants in the GBA1 gene are also the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Restoring lysosomal GCase activity represents an important therapeutic approach for GBA1-associated diseases. We hypothesized that increasing the stability of lysosomal GCase protein could correct deficient GCase activity in these conditions. However, it remains unknown how GCase stability is regulated in the lysosome. We found that cathepsin L, a lysosomal cysteine protease, cleaves GCase and regulates its stability. In support of these data, GCase protein was elevated in the brain of cathepsin L-KO mice. Chemical inhibition of cathepsin L increased both GCase levels and activity in fibroblasts from patients with GD. Importantly, inhibition of cathepsin L in dopaminergic neurons from a patient GBA1-PD led to increased GCase levels and activity as well as reduced phosphorylated α-synuclein. These results suggest that targeting cathepsin L-mediated GCase degradation represents a potential therapeutic strategy for GCase deficiency in PD and related disorders that exhibit decreased GCase activity.


Asunto(s)
Proteasas de Cisteína , Enfermedad de Parkinson , Humanos , Animales , Ratones , Glucosilceramidasa/genética , Catepsina L/genética , Catepsina L/metabolismo , Catepsinas/metabolismo , Catepsinas/uso terapéutico , Proteasas de Cisteína/metabolismo , Proteasas de Cisteína/uso terapéutico , Enfermedad de Parkinson/metabolismo , Lisosomas/metabolismo
3.
Cells ; 12(16)2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37626841

RESUMEN

The cytosolic dipeptidyl-aminopeptidases 8 (DPP8) and 9 (DPP9) belong to the DPPIV serine proteases with the unique characteristic of cleaving off a dipeptide post-proline from the N-termini of substrates. To study the role of DPP8 and DPP9 in breast cancer, MCF-7 cells (luminal A-type breast cancer) and MDA.MB-231 cells (basal-like breast cancer) were used. The inhibition of DPP8/9 by 1G244 increased the number of lysosomes in both cell lines. This phenotype was more pronounced in MCF-7 cells, in which we observed a separation of autophagosomes and lysosomes in the cytosol upon DPP8/9 inhibition. Likewise, the shRNA-mediated knockdown of either DPP8 or DPP9 induced autophagy and increased lysosomes. DPP8/9 inhibition as well as the knockdown of the DPPs reduced the cell survival and proliferation of MCF-7 cells. Additional treatment of MCF-7 cells with tamoxifen, a selective estrogen receptor modulator (SERM) used to treat patients with luminal breast tumors, further decreased survival and proliferation, as well as increased cell death. In summary, both DPP8 and DPP9 activities confine macroautophagy in breast cancer cells. Thus, their inhibition or knockdown reduces cell viability and sensitizes luminal breast cancer cells to tamoxifen treatment.


Asunto(s)
Neoplasias , Tamoxifeno , Humanos , Tamoxifeno/farmacología , Autofagia , Macroautofagia , Células MCF-7 , Aminopeptidasas
4.
Angew Chem Int Ed Engl ; 62(36): e202306654, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37439488

RESUMEN

Metabolic magnetic resonance imaging (MRI) using hyperpolarized (HP) pyruvate is becoming a non-invasive technique for diagnosing, staging, and monitoring response to treatment in cancer and other diseases. The clinically established method for producing HP pyruvate, dissolution dynamic nuclear polarization, however, is rather complex and slow. Signal Amplification By Reversible Exchange (SABRE) is an ultra-fast and low-cost method based on fast chemical exchange. Here, for the first time, we demonstrate not only in vivo utility, but also metabolic MRI with SABRE. We present a novel routine to produce aqueous HP [1-13 C]pyruvate-d3 for injection in 6 minutes. The injected solution was sterile, non-toxic, pH neutral and contained ≈30 mM [1-13 C]pyruvate-d3 polarized to ≈11 % (residual 250 mM methanol and 20 µM catalyst). It was obtained by rapid solvent evaporation and metal filtering, which we detail in this manuscript. This achievement makes HP pyruvate MRI available to a wide biomedical community for fast metabolic imaging of living organisms.


Asunto(s)
Imagen por Resonancia Magnética , Ácido Pirúvico , Imagen por Resonancia Magnética/métodos , Solventes/química , Metanol , Agua/química
5.
Sci Signal ; 16(768): eabh1083, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36649377

RESUMEN

Inflammasomes are intracellular protein complexes that promote an inflammatory host defense in response to pathogens and damaged or neoplastic tissues and are implicated in inflammatory disorders and therapeutic-induced toxicity. We investigated the mechanisms of activation for inflammasomes nucleated by NOD-like receptor (NLR) protiens. A screen of a small-molecule library revealed that several tyrosine kinase inhibitors (TKIs)-including those that are clinically approved (such as imatinib and crizotinib) or are in clinical trials (such as masitinib)-activated the NLRP3 inflammasome. Furthermore, imatinib and masitinib caused lysosomal swelling and damage independently of their kinase target, leading to cathepsin-mediated destabilization of myeloid cell membranes and, ultimately, cell lysis that was accompanied by potassium (K+) efflux, which activated NLRP3. This effect was specific to primary myeloid cells (such as peripheral blood mononuclear cells and mouse bone marrow-derived dendritic cells) and did not occur in other primary cell types or various cell lines. TKI-induced lytic cell death and NLRP3 activation, but not lysosomal damage, were prevented by stabilizing cell membranes. Our findings reveal a potential immunological off-target of some TKIs that may contribute to their clinical efficacy or to their adverse effects.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mesilato de Imatinib , Leucocitos Mononucleares/metabolismo , Muerte Celular , Células Mieloides/metabolismo , Interleucina-1beta/metabolismo
6.
Nat Commun ; 13(1): 7338, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443305

RESUMEN

Transient lysosomal damage after infection with cytosolic pathogens or silica crystals uptake results in protease leakage. Whether limited leakage of lysosomal contents into the cytosol affects the function of cytoplasmic organelles is unknown. Here, we show that sterile and non-sterile lysosomal damage triggers a cell death independent proteolytic remodelling of the mitochondrial proteome in macrophages. Mitochondrial metabolic reprogramming required leakage of lysosomal cathepsins and was independent of mitophagy, mitoproteases and proteasome degradation. In an in vivo mouse model of endomembrane damage, live lung macrophages that internalised crystals displayed impaired mitochondrial function. Single-cell RNA-sequencing revealed that lysosomal damage skewed metabolic and immune responses in alveolar macrophages subsets with increased lysosomal content. Functionally, drug modulation of macrophage metabolism impacted host responses to Mycobacterium tuberculosis infection in an endomembrane damage dependent way. This work uncovers an inter-organelle communication pathway, providing a general mechanism by which macrophages undergo mitochondrial metabolic reprograming after endomembrane damage.


Asunto(s)
Mitocondrias , Proteoma , Animales , Ratones , Macrófagos , Mitofagia , Péptido Hidrolasas , Lisosomas
7.
Front Oncol ; 12: 960109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313646

RESUMEN

Proteases are known to promote or impair breast cancer progression and metastasis. However, while a small number of the 588 human and 672 murine protease genes have been extensively studied, others were neglected. For an unbiased functional analysis of all genome-encoded proteases, i.e., the degradome, in breast cancer cell growth, we applied an inducible RNA interference library for protease-focused genetic screens. Importantly, these functional screens were performed in two phenotypically different murine breast cancer cell lines, including one stem cell-like cell line that showed phenotypic plasticity under changed nutrient and oxygen availability. Our unbiased genetic screens identified 252 protease genes involved in breast cancer cell growth that were further restricted to 100 hits by a selection process. Many of those hits were supported by literature, but some proteases were novel in their functional link to breast cancer. Interestingly, we discovered that the environmental conditions influence the degree of breast cancer cell dependency on certain proteases. For example, breast cancer stem cell-like cells were less susceptible to depletion of several mitochondrial proteases in hypoxic conditions. From the 100 hits, nine proteases were functionally validated in murine breast cancer cell lines using individual knockdown constructs, highlighting the high reliability of our screens. Specifically, we focused on mitochondrial processing peptidase (MPP) subunits alpha (Pmpca) and beta (Pmpcb) and discovered that MPP depletion led to a disadvantage in cell growth, which was linked to mitochondrial dysfunction.

8.
Theranostics ; 12(9): 4348-4373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35673573

RESUMEN

RATIONALE: PI3K/mTOR signaling is frequently upregulated in breast cancer making inhibitors of this pathway highly promising anticancer drugs. However, PI3K-inhibitors have a low therapeutic index. Therefore, finding novel combinatory treatment options represents an important step towards clinical implementation of PI3K pathway inhibition in breast cancer therapy. Here, we propose proteases as potential synergistic partners with simultaneous PI3K inhibition in breast cancer cells. METHODS: We performed mRNA expression studies and unbiased functional genetic synthetic lethality screens by a miR-E based knockdown system targeting all genome-encoded proteases, i.e. the degradome of breast cancer cells. Importantly theses RNA interference screens were done in combination with two PI3K pathway inhibitors. Protease hits were validated in human and murine breast cancer cell lines as well as in non-cancerous cells by viability and growth assays. RESULTS: The degradome-wide genetic screens identified 181 proteases that influenced susceptibility of murine breast cancer cells to low dose PI3K inhibition. Employing independently generated inducible knockdown cell lines we validated 12 protease hits in breast cancer cells. In line with the known tumor promoting function of these proteases we demonstrated Usp7 and Metap2 to be important for murine and human breast cancer cell growth and discovered a role for Metap1 in this context. Most importantly, we demonstrated that Usp7, Metap1 or Metap2 knockdown combined with simultaneous PI3K inhibition resulted in synergistic impairment of murine and human breast cancer cell growth Conclusion: We successfully established proteases as combinatory targets with PI3K inhibition in human and murine breast cancer cells. Usp7, Metap1 and Metap2 are synthetic lethal partners of simultaneous protease/PI3K inhibition, which may refine future breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasas , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Aminopeptidasas/uso terapéutico , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Péptido Hidrolasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Peptidasa Específica de Ubiquitina 7/genética
9.
J Neuroinflammation ; 18(1): 176, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376208

RESUMEN

BACKGROUND: Cathepsin H (CatH) is a lysosomal cysteine protease with a unique aminopeptidase activity. Its expression level is increased in activated immune cells including dendritic cells, macrophages, and microglia. We have previously reported that CatH deficiency impairs toll-like receptor 3 (TLR3)-mediated activation of interferon regulatory factor 3 (IRF3), and the subsequent secretion of interferon (IFN)-ß from dendritic cells. Furthermore, there is increasing evidence that IFN-ß secreted from microglia/macrophages has neuroprotective effects. These observations prompted further investigation into the effects of CatH deficiency on neuropathological changes. METHODS: In this study, neuropathological changes were examined using histochemical staining (both hematoxylin-eosin (H&E) and Nissl) of the hippocampus of wild-type (WT) and CatH-deficient (CatH-/-) mice after hypoxia-ischemia (HI). The density and the localization of CatH and TLR3 were examined by immunofluorescent staining. CatH processing in microglia was assayed by pulse-chase experiments, while immunoblotting was used to examine TLR3 expression and IRF3 activation in microglia/macrophages in the presence of poly(I:C). Microglial cell death was examined by fluorescence-activated cell sorting (FACS), and primary astrocyte proliferation in the presence of IFN-ß was examined using scratch wound assay. RESULTS: WT mice displayed severe atrophy in association with neuronal death and moderate astrogliosis in the hippocampus following neonatal HI. Somewhat surprisingly, CatH-/- mice showed marked neuronal death without severe atrophy in the hippocampus following HI. Furthermore, there was notable microglia/macrophages cell death and strong astrogliosis in the hippocampus. The TLR3 and phosphorylated IRF3 expression level in the hippocampus or splenocytes (mainly splenic macrophages); from CatH-/- mice was lower than in WT mice. In vitro experiments demonstrated that recombinant IFN-ß suppressed HI-induced microglial cell death and astrocyte proliferation. CONCLUSION: These observations suggest that CatH plays a critical role in the proteolytic maturation and stabilization of TLR3, which is necessary for IFN-ß production. Therefore, impaired TLR3/IFN-ß signaling resulting from CatH deficiency may induce microglial cell death after activation and astrogliosis/glial scar formation in the hippocampus following HI injury, leading to suppression of hippocampal atrophy.


Asunto(s)
Catepsina H/genética , Hipocampo/patología , Hipoxia-Isquemia Encefálica/genética , Interferón beta/metabolismo , Receptor Toll-Like 3/metabolismo , Animales , Atrofia/genética , Atrofia/metabolismo , Atrofia/patología , Catepsina H/metabolismo , Muerte Celular/fisiología , Hipocampo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Interferón beta/genética , Ratones , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Transducción de Señal/fisiología , Receptor Toll-Like 3/genética
10.
Theranostics ; 11(13): 6173-6192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995652

RESUMEN

Rationale: Alternative therapeutic strategies based on tumor-specific molecular targets are urgently needed for triple-negative breast cancer (TNBC). The protease cathepsin D (cath-D) is a marker of poor prognosis in TNBC and a tumor-specific extracellular target for antibody-based therapy. The identification of cath-D substrates is crucial for the mechanistic understanding of its role in the TNBC microenvironment and future therapeutic developments. Methods: The cath-D substrate repertoire was investigated by N-Terminal Amine Isotopic Labeling of Substrates (TAILS)-based degradome analysis in a co-culture assay of TNBC cells and breast fibroblasts. Substrates were validated by amino-terminal oriented mass spectrometry of substrates (ATOMS). Cath-D and SPARC expression in TNBC was examined using an online transcriptomic survival analysis, tissue micro-arrays, TNBC cell lines, patient-derived xenografts (PDX), human TNBC samples, and mammary tumors from MMTV-PyMT Ctsd-/- knock-out mice. The biological role of SPARC and its fragments in TNBC were studied using immunohistochemistry and immunofluorescence analysis, gene expression knockdown, co-culture assays, western blot analysis, RT-quantitative PCR, adhesion assays, Transwell motility, trans-endothelial migration and invasion assays. Results: TAILS analysis showed that the matricellular protein SPARC is a substrate of extracellular cath-D. In vitro, cath-D induced limited proteolysis of SPARC C-terminal extracellular Ca2+ binding domain at acidic pH, leading to the production of SPARC fragments (34-, 27-, 16-, 9-, and 6-kDa). Similarly, cath-D secreted by TNBC cells cleaved fibroblast- and cancer cell-derived SPARC at the tumor pericellular acidic pH. SPARC cleavage also occurred in TNBC tumors. Among these fragments, only the 9-kDa SPARC fragment inhibited TNBC cell adhesion and spreading on fibronectin, and stimulated their migration, endothelial transmigration, and invasion. Conclusions: Our study establishes a novel crosstalk between proteases and matricellular proteins in the tumor microenvironment through limited SPARC proteolysis, revealing a novel targetable 9-kDa bioactive SPARC fragment for new TNBC treatments. Our study will pave the way for the development of strategies for targeting bioactive fragments from matricellular proteins in TNBC.


Asunto(s)
Catepsina D/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Osteonectina/metabolismo , Fragmentos de Péptidos/farmacología , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catepsina D/deficiencia , Catepsina D/genética , Adhesión Celular , Femenino , Fibroblastos , Regulación Neoplásica de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Mamarias Experimentales/enzimología , Ratones , Ratones Noqueados , Ratones Transgénicos , Peso Molecular , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Osteonectina/genética , Fragmentos de Péptidos/metabolismo , Dominios Proteicos , Proteolisis , Especificidad por Sustrato , Migración Transendotelial y Transepitelial , Neoplasias de la Mama Triple Negativas/enzimología
11.
Methods Mol Biol ; 2294: 275-293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33742409

RESUMEN

It is becoming increasingly evident that progression and metastasis of solid cancers is driven by the interaction of oncogene-transformed cancer cells and non-malignant host cells in the tumor stroma. In this process, the immune system contributes a complex set of highly important pro- and antitumor effects, which are not readily recapitulated by commonly used xenograft cancer models in immunodeficient mice.Therefore, we provide protocols for isolation of primary tumor cells from the MMTV-PymT mouse model for metastasizing breast cancer and their resubmission to congenic immunocompetent mice by orthotopic transplantation into the mammary gland or different routes of injection to induce organ-specific experimental metastasis, including intravenous, intracardiac, and caudal artery injection of tumor cells. Moreover, we describe protocols for sensitive detection and quantification of the metastatic burden.


Asunto(s)
Adenocarcinoma/patología , Neoplasias Encefálicas/secundario , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/patología , Péptido Hidrolasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Adenocarcinoma/enzimología , Animales , Femenino , Neoplasias Mamarias Experimentales/enzimología , Ratones , Transgenes , Células Tumorales Cultivadas
12.
Cell Mol Life Sci ; 78(2): 733-755, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32385587

RESUMEN

Previous clinical and experimental evidence strongly supports a breast cancer-promoting function of the lysosomal protease cathepsin B. However, the cathepsin B-dependent molecular pathways are not completely understood. Here, we studied the cathepsin-mediated secretome changes in the context of the MMTV-PyMT breast cancer mouse model. Employing the cell-conditioned media from tumor-macrophage co-cultures, as well as tumor interstitial fluid obtained by a novel strategy from PyMT mice with differential cathepsin B expression, we identified an important proteolytic and lysosomal signature, highlighting the importance of this organelle and these enzymes in the tumor micro-environment. The Cellular Repressor of E1A Stimulated Genes 1 (CREG1), a secreted endolysosomal glycoprotein, displayed reduced abundance upon over-expression of cathepsin B as well as increased abundance upon cathepsin B deletion or inhibition. Moreover, it was cleaved by cathepsin B in vitro. CREG1 reportedly could act as tumor suppressor. We show that treatment of PyMT tumor cells with recombinant CREG1 reduced proliferation, migration, and invasion; whereas, the opposite was observed with reduced CREG1 expression. This was further validated in vivo by orthotopic transplantation. Our study highlights CREG1 as a key player in tumor-stroma interaction and suggests that cathepsin B sustains malignant cell behavior by reducing the levels of the growth suppressor CREG1 in the tumor microenvironment.


Asunto(s)
Neoplasias de la Mama/patología , Catepsina B/metabolismo , Invasividad Neoplásica/patología , Proteínas Represoras/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Catepsina B/genética , Proliferación Celular , Femenino , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Ratones , Invasividad Neoplásica/genética , Proteínas Represoras/genética , Células Tumorales Cultivadas , Microambiente Tumoral , Regulación hacia Arriba
13.
Nat Commun ; 11(1): 5133, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046706

RESUMEN

Cathepsin D (CTSD) is a lysosomal protease and a marker of poor prognosis in breast cancer. However, the cells responsible for this association and the function of CTSD in cancer are still incompletely understood. By using a conditional CTSD knockout mouse crossed to the transgenic MMTV-PyMT breast cancer model we demonstrate that CTSD deficiency in the mammary epithelium, but not in myeloid cells, blocked tumor development in a cell-autonomous manner. We show that lack of CTSD impaired mechanistic Target of Rapamycin Complex 1 (mTORC1) signaling and induced reversible cellular quiescence. In line, CTSD-deficient tumors started to grow with a two-month delay and quiescent Ctsd-/- tumor cells re-started proliferation upon long-term culture. This was accompanied by rewiring of oncogenic gene expression and signaling pathways, while mTORC1 signaling remained permanently disabled in CTSD-deficient cells. Together, these studies reveal a tumor cell-autonomous effect of CTSD deficiency, and establish a pivotal role of this protease in the cellular response to oncogenic stimuli.


Asunto(s)
Neoplasias de la Mama/metabolismo , Catepsina D/genética , Epitelio/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Animales , Neoplasias de la Mama/genética , Catepsina D/deficiencia , Femenino , Humanos , Glándulas Mamarias Animales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
14.
Oncogene ; 39(38): 6053-6070, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32792685

RESUMEN

BRAFV600E confers poor prognosis and is associated with a distinct subtype of colorectal cancer (CRC). Little is known, however, about the genetic events driving the initiation and progression of BRAFV600E mutant CRCs. Recent genetic analyses of CRCs indicate that BRAFV600E often coexists with alterations in the WNT- and p53 pathways, but their cooperation remains ill-defined. Therefore, we systematically compared small and large intestinal organoids from mice harboring conditional BraffloxV600E, Trp53LSL-R172H, and/or Apcflox/flox alleles. Using these isogenic models, we observe tissue-specific differences toward sudden BRAFV600E expression, which can be attributed to different ERK-pathway ground states in small and large intestinal crypts. BRAFV600E alone causes transient proliferation and suppresses epithelial organization, followed by organoid disintegration. Moreover, BRAFV600E induces a fetal-like dedifferentiation transcriptional program in colonic organoids, which resembles human BRAFV600E-driven CRC. Co-expression of p53R172H delays organoid disintegration, confers anchorage-independent growth, and induces invasive properties. Interestingly, p53R172H cooperates with BRAFV600E to modulate the abundance of transcripts linked to carcinogenesis, in particular within colonic organoids. Remarkably, WNT-pathway activation by Apc deletion fully protects organoids against BRAFV600E-induced disintegration and confers growth/niche factor independence. Still, Apc-deficient BRAFV600E-mutant organoids remain sensitive toward the MEK inhibitor trametinib, albeit p53R172H confers partial resistance against this clinically relevant compound. In summary, our systematic comparison of the response of small and large intestinal organoids to oncogenic alterations suggests colonic organoids to be better suited to model the human situation. In addition, our work on BRAF-, p53-, and WNT-pathway mutations provides new insights into their cooperation and for the design of targeted therapies.


Asunto(s)
Desdiferenciación Celular/genética , Transformación Celular Neoplásica/genética , Genes APC , Predisposición Genética a la Enfermedad , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteína p53 Supresora de Tumor/genética , Animales , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/patología , Sistema de Señalización de MAP Quinasas , Ratones , Modelos Biológicos , Invasividad Neoplásica , Oncogenes , Organoides , Técnicas de Cultivo de Tejidos
15.
Cancers (Basel) ; 12(8)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707827

RESUMEN

Background: Cathepsin L (Ctsl) is a cysteine protease mainly located within the endosomal/lysosomal cell compartment. High expression of Ctsl indicates poor prognosis in human breast cancer. However, the cell type-specific Ctsl functions responsible for this association remain elusive. Methods: Because constitutive Ctsl-/- mice develop a complex phenotype, we developed a conditional model allowing for cell type-specific inactivation of Ctsl in mammary epithelium or myeloid cells in the transgenic mouse mammary tumor virus (MMTV)-polyoma middle T (PyMT) breast cancer model. Results: Ctsl ablation in mammary epithelial cells resulted in delayed initiation and end-stage of cancers. The latter displayed large dead cell areas. Inducible in vitro deletion of Ctsl in MMTV-PyMT-derived breast cancer cells revealed expansion of the acidic cell compartment, alteration of intracellular amino acid levels, and impaired mTOR signaling. In consequence, Ctsl-deficient cells exhibited slow growth rates and high apoptosis susceptibility. In contrast to Ctsl-deficient mammary epithelium, selective knockout of Ctsl in myeloid cells had no effects on primary tumors, but promoted lung metastasis formation. Conclusions: Our cell type-specific in vivo analysis provides strong evidence for a cancer cell-intrinsic, tumor-promoting role of Ctsl in primary breast cancer, whereas metastasis is negatively regulated by Ctsl expressed by bone marrow-derived cells.

16.
FEBS J ; 287(23): 5148-5166, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32319717

RESUMEN

L-leucyl-leucine methyl ester (LLOMe) is a lysosomotropic detergent, which was evaluated in clinical trials in graft-vs-host disease because it very efficiently killed monocytic cell lines. It was also shown to efficiently trigger apoptosis in cancer cells, suggesting that the drug might have potential in anticancer therapy. Using U-937 and THP-1 promonocytes as models for monocytic cells, U-87-MG and HeLa cells as models for cancer cells, and noncancerous HEK293 cells, we show that the drug triggers rapid cathepsin C-dependent lysosomal membrane permeabilization, followed by the release of other cysteine cathepsins into the cytosol and subsequent apoptosis. However, monocytes were found to be far more sensitive to the drug than the cancer and noncancer cells, which is most likely a consequence of the much higher intracellular levels of cathepsin C-the most upstream molecule in the pathway-in monocytic cell lines as compared to cancer cells. Overexpression of cathepsin C in HEK293 cells substantially enhances their sensitivity to the drug, consistent with the crucial role of cathepsin C. Major involvement of cysteine cathepsins B, S, and L in the downstream signaling pathway to mitochondrial cell death was confirmed in two gene ablation models, including the ablation of the major cytosolic inhibitor of cysteine cathepsins, stefin B, in primary mouse cancer cells, and simultaneous ablation of two major cathepsins, B and L, in mouse embryonic fibroblasts (MEFs). Deletion of stefin B resulted in sensitizing primary murine breast cancer cells to cell death without affecting the release of cathepsins, whereas simultaneous ablation of cathepsins B and L largely protected MEFs against cell death. However, due to the extreme sensitivity of monocytes to LLOMe, it appears that the drug may not be suitable for anticancer therapy due to risk of systemic toxicity.


Asunto(s)
Apoptosis , Catepsina C/metabolismo , Dipéptidos/farmacología , Inmunosupresores/farmacología , Monocitos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Células Cultivadas , Citosol/efectos de los fármacos , Citosol/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Monocitos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología
17.
Biochim Biophys Acta Proteins Proteom ; 1868(7): 140423, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32247787

RESUMEN

The human genome encodes for 11 papain-like endolysosomal cysteine peptidases, collectively known as the cysteine cathepsins. Based on their biochemical properties and with the help of experiments in cell culture, the cysteine cathepsins have acquired a reputation as promotors of progression and metastasis of various cancer entities. However, tumors are known to be complex tissues in which non-cancerous cells are also critical for tumorigenesis. Here we discuss the results of the intense investigation of cathepsins in mouse models of human cancers. We focus on models in immunocompetent mice, because only such models allow for analysis of cathepsins in a fully functional tumor microenvironment. An important outcome of those studies was the identification of cancer-promoting cathepsins in tumor-associated macrophages. Another interesting outcome of these animal studies was the identification of a homeostatic tumor-suppressive role for cathepsin L in skin and intestinal cancers. Taken together, these in vivo findings provide a basis for the use of cysteine cathepsins as therapeutic targets, prodrug activators, or as proteases for imaging tumors.


Asunto(s)
Catepsinas/metabolismo , Cisteína/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/fisiología , Aloinjertos , Animales , Neoplasias de la Mama/metabolismo , Carcinogénesis , Catepsina B/genética , Catepsina B/metabolismo , Catepsina L , Catepsinas/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Intestinales/metabolismo , Ratones , Neoplasias/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Cutáneas/metabolismo , Microambiente Tumoral/genética
18.
Cancer Metastasis Rev ; 38(3): 431-444, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31482486

RESUMEN

Changing the characteristics of cells from epithelial states to mesenchymal properties is a key process involved in developmental and physiological processes as well as in many diseases with cancer as the most prominent example. Nowadays, a great deal of work and literature concerns the understanding of the process of epithelial-to-mesenchymal transition (EMT) in terms of its molecular regulation and its implications for cancer. Similar statements can certainly be made regarding the investigation of the more than 500 proteases typically encoded by a mammalian genome. Specifically, the impact of proteases on tumor biology has been a long-standing topic of interest. However, although EMT actively regulates expression of many proteases and proteolytic enzymes are clearly involved in survival, division, differentiation, and movements of cells, information on the diverse roles of proteases in EMT has been rarely compiled. Here we aim to conceptually connect the scientific areas of "EMT" and "protease" research by describing how several important classes of proteolytic enzymes are regulated by EMT and how they are involved in initiation and execution of the EMT program. To do so, we briefly introduce the evolving key features of EMT and its regulation followed by discussion of protease involvement in this process.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Neoplasias/enzimología , Neoplasias/patología , Péptido Hidrolasas/metabolismo , Animales , Enzimas Desubicuitinizantes/metabolismo , Progresión de la Enfermedad , Humanos , Metaloproteasas/metabolismo
19.
Theranostics ; 9(13): 3903-3917, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281521

RESUMEN

Cysteine-type cathepsins such as cathepsin B are involved in various steps of inflammatory processes such as antigen processing and angiogenesis. Here, we uncovered the role of cysteine-type cathepsins in the effector phase of T cell-driven cutaneous delayed-type hypersensitivity reactions (DTHR) and the implication of this role on therapeutic cathepsin B-specific inhibition. Methods: Wild-type, cathepsin B-deficient (Ctsb-/-) and cathepsin Z-deficient (Ctsz-/-) mice were sensitized with 2,4,6-trinitrochlorobenzene (TNCB) on the abdomen and challenged with TNCB on the right ear to induce acute and chronic cutaneous DTHR. The severity of cutaneous DTHR was assessed by evaluating ear swelling responses and histopathology. We performed fluorescence microscopy on tissue from inflamed ears and lymph nodes of wild-type mice, as well as on biopsies from psoriasis patients, focusing on cathepsin B expression by T cells, B cells, macrophages, dendritic cells and NK cells. Cathepsin activity was determined noninvasively by optical imaging employing protease-activated substrate-like probes. Cathepsin expression and activity were validated ex vivo by covalent active site labeling of proteases and Western blotting. Results: Noninvasive in vivo optical imaging revealed strong cysteine-type cathepsin activity in inflamed ears and draining lymph nodes in acute and chronic cutaneous DTHR. In inflamed ears and draining lymph nodes, cathepsin B was expressed by neutrophils, dendritic cells, macrophages, B, T and natural killer (NK) cells. Similar expression patterns were found in psoriatic plaques of patients. The biochemical methods confirmed active cathepsin B in tissues of mice with cutaneous DTHR. Topically applied cathepsin B inhibitors significantly reduced ear swelling in acute but not chronic DTHR. Compared with wild-type mice, Ctsb-/- mice exhibited an enhanced ear swelling response during acute DTHR despite a lack of cathepsin B expression. Cathepsin Z, a protease closely related to cathepsin B, revealed compensatory expression in inflamed ears of Ctsb-/- mice, while cathepsin B expression was reciprocally elevated in Ctsz-/- mice. Conclusion: Cathepsin B is actively involved in the effector phase of acute cutaneous DTHR. Thus, topically applied cathepsin B inhibitors might effectively limit DTHR such as contact dermatitis or psoriasis. However, the cathepsin B and Z knockout mouse experiments suggested a complementary role for these two cysteine-type proteases.


Asunto(s)
Catepsinas/metabolismo , Cisteína/metabolismo , Hipersensibilidad Tardía/enzimología , Piel/patología , Enfermedad Aguda , Animales , Dominio Catalítico , Catepsinas/antagonistas & inhibidores , Enfermedad Crónica , Femenino , Humanos , Inflamación/patología , Ratones Endogámicos C57BL , Imagen Óptica , Cloruro de Picrilo , Inhibidores de Proteasas/farmacología
20.
Biochimie ; 166: 214-222, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30876968

RESUMEN

Cancer cells within a tumor are heterogeneous and exist in a variety of functionally distinct cell states, which are thought to be hierarchically organized. The cell on top of this hierarchy, the cancer stem cell (CSC) or, alternatively, tumor initiating cell (TIC), is responsible for initiation, maintenance, progression, and relapse of tumors. For the execution of these functions, CSC are equipped with distinct molecular tools. Although proteolytic enzymes in cancers have been extensively studied in general, relatively few studies have addressed proteases in function and fate of CSC/TICs. Here we review protease involvement in cell biological hallmarks of CSC/TICs such as cellular self-renewal, extracellular matrix remodeling and cell motility, resistance to radio- and chemotherapies, as well as evasion of the immune system. In general, CSC/TICs are characterized by a comparatively high expression and activity of proteases. It appears that CSC/TICs install a high degree of pericellular proteolysis depending on metalloproteases such as ADAMs and MMPs but also on secreted serine- and cysteine proteases. Interestingly, it turned out that not all proteases promote the malignant behavior of CSC/TICs. In fact, some proteases, such as ADAM 23, cathepsin K, and granzyme B, have been shown to negatively regulate CSC/TIC functions, thereby exhibiting anti-tumor effects. Finally, we discuss how the enhanced proteolytic signature of CSC/TICs can be used for their therapeutic targeting in order to render this clinically decisive subpopulation of cancer cells harmless.


Asunto(s)
Neoplasias de la Mama , Células Madre Neoplásicas , Péptido Hidrolasas/metabolismo , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , Células Madre Neoplásicas/enzimología , Células Madre Neoplásicas/patología , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA