Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071392

RESUMEN

Identifying host genetic factors modulating immune checkpoint inhibitor (ICI) efficacy has been experimentally challenging because of variations in both host and tumor genomes, differences in the microbiome, and patient life exposures. Utilizing the Collaborative Cross (CC) multi-parent mouse genetic resource population, we developed an approach that fixes the tumor genomic configuration while varying host genetics. With this approach, we discovered that response to anti-PD-1 (aPD1) immunotherapy was significantly heritable in four distinct murine tumor models (H2 between 0.18-0.40). For the MC38 colorectal carcinoma system (H2 = 0.40), we mapped four significant ICI response quantitative trait loci (QTL) localized to mouse chromosomes (mChr) 5, 9, 15 and 17, and identified significant epistatic interactions between specific QTL pairs. Differentially expressed genes within these QTL were highly enriched for immune genes and pathways mediating allograft rejection and graft vs host disease. Using a cross species analytical approach, we found a core network of 48 genes within the four QTLs that showed significant prognostic value for overall survival in aPD1 treated human cohorts that outperformed all other existing validated immunotherapy biomarkers, especially in human tumors of the previously defined immune subtype 4. Functional blockade of two top candidate immune targets within the 48 gene network, GM-CSF and high affinity IL-2/IL-15 signaling, completely abrogated the MC38 tumor transcriptional response to aPD1 therapy in vivo. Thus, we have established a powerful cross species in vivo platform capable of uncovering host genetic factors that establish the tumor immune microenvironment configuration propitious for ICI response.

2.
J Cell Biol ; 220(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34515734

RESUMEN

Micronuclei, whole or fragmented chromosomes spatially separated from the main nucleus, are associated with genomic instability and have been identified as drivers of tumorigenesis. Paradoxically, Kif18a mutant mice produce micronuclei due to asynchronous segregation of unaligned chromosomes in vivo but do not develop spontaneous tumors. We report here that micronuclei in Kif18a mutant mice form stable nuclear envelopes. Challenging Kif18a mutant mice via deletion of the Trp53 gene led to formation of thymic lymphoma with elevated levels of micronuclei. However, loss of Kif18a had modest or no effect on survival of Trp53 homozygotes and heterozygotes, respectively. Micronuclei in cultured KIF18A KO cells form stable nuclear envelopes characterized by increased recruitment of nuclear envelope components and successful expansion of decondensing chromatin compared with those induced by nocodazole washout or radiation. Lagging chromosomes were also positioned closer to the main chromatin masses in KIF18A KO cells. These data suggest that not all micronuclei actively promote tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Núcleo Celular/genética , Cinesinas/genética , Membrana Nuclear/genética , Animales , Línea Celular , Cromatina/genética , Cromosomas/genética , Daño del ADN/genética , Femenino , Inestabilidad Genómica/genética , Humanos , Masculino , Ratones
3.
J Cell Biol ; 218(4): 1148-1163, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30733233

RESUMEN

Chromosome alignment at the equator of the mitotic spindle is a highly conserved step during cell division; however, its importance to genomic stability and cellular fitness is not understood. Normal mammalian somatic cells lacking KIF18A function complete cell division without aligning chromosomes. These alignment-deficient cells display normal chromosome copy numbers in vitro and in vivo, suggesting that chromosome alignment is largely dispensable for maintenance of euploidy. However, we find that loss of chromosome alignment leads to interchromosomal compaction defects during anaphase, abnormal organization of chromosomes into a single nucleus at mitotic exit, and the formation of micronuclei in vitro and in vivo. These defects slow cell proliferation and are associated with impaired postnatal growth and survival in mice. Our studies support a model in which the alignment of mitotic chromosomes promotes proper organization of chromosomes into a single nucleus and continued proliferation by ensuring that chromosomes segregate as a compact mass during anaphase.


Asunto(s)
Anafase , Segregación Cromosómica , Cromosomas Humanos , Huso Acromático/fisiología , Animales , Línea Celular , Proliferación Celular , Células Epiteliales/fisiología , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Ratones Noqueados , Epitelio Pigmentado de la Retina/fisiología , Huso Acromático/genética , Huso Acromático/metabolismo , Factores de Tiempo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
PLoS One ; 11(3): e0150852, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26950939

RESUMEN

During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp) deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS), an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps) exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10-7). Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains.


Asunto(s)
Emparejamiento Base/genética , Proteínas Sanguíneas/genética , Mutación del Sistema de Lectura , Síndrome de Plaquetas Grises/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Sanguíneas/química , Médula Ósea/inmunología , Emperipolesis/genética , Exoma/genética , Exones/genética , Femenino , Fertilidad/genética , Síndrome de Plaquetas Grises/complicaciones , Síndrome de Plaquetas Grises/inmunología , Síndrome de Plaquetas Grises/fisiopatología , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Neutropenia/complicaciones , Neutrófilos/citología , Bazo/inmunología , Trombocitopenia/complicaciones
5.
PLoS One ; 10(5): e0125897, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25933409

RESUMEN

Alzheimer's disease (AD) is a leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles (NFTs) and neuronal dysfunction. Early onset AD (EOAD) is commonly caused by mutations in amyloid precursor protein (APP) or genes involved in the processing of APP including the presenilins (e.g. PSEN1 or PSEN2). In general, mouse models relevant to EOAD recapitulate amyloidosis, show only limited amounts of NFTs and neuronal cell dysfunction and low but significant levels of seizure susceptibility. To investigate the effect of genetic background on these phenotypes, we generated APPswe and PSEN1de9 transgenic mice on the seizure prone inbred strain background, DBA/2J. Previous studies show that the DBA/2J genetic background modifies plaque deposition in the presence of mutant APP but the impact of PSEN1de9 has not been tested. Our study shows that DBA/2J.APPswePSEN1de9 mice are significantly more prone to premature lethality, likely to due to lethal seizures, compared to B6.APPswePSEN1de9 mice-70% of DBA/2J.APPswePSEN1de9 mice die between 2-3 months of age. Of the DBA/2J.APPswePSEN1de9 mice that survived to 6 months of age, plaque deposition was greatly reduced compared to age-matched B6.APPswePSEN1de9 mice. The reduction in plaque deposition appears to be independent of microglia numbers, reactive astrocytosis and complement C5 activity.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Progresión de la Enfermedad , Convulsiones/complicaciones , Convulsiones/patología , Envejecimiento/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Cromosomas de los Mamíferos/genética , Complemento C5/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Microglía/patología , Mutagénesis Insercional , Neuronas/patología , Fenotipo , Placa Amiloide/patología , Presenilinas/metabolismo , Transgenes
6.
Exp Mol Pathol ; 98(2): 164-72, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25659760

RESUMEN

Studies of spontaneous mutations in mice have provided valuable disease models and important insights into the mechanisms of human disease. Ruffled (rul) is a new autosomal recessive mutation causing abnormal hair coat in mice. The rul allele arose spontaneously in the RB156Bnr/EiJ inbred mouse strain. In addition to an abnormal coat texture, we found diffuse epidermal blistering, abnormal electrocardiograms (ECGs), and ventricular fibrosis in mutant animals. Using high-throughput sequencing (HTS) we found a frameshift mutation at 38,288,978bp of chromosome 13 in the desmoplakin gene (Dsp). The predicted mutant protein is truncated at the c-terminus and missing the majority of the plakin repeat domain. The phenotypes found in Dsp(rul) mice closely model a rare human disorder, Carvajal-Huerta syndrome. Carvajal-Huerta syndrome (CHS) is a rare cardiocutaneous disorder that presents in humans with wooly hair, palmoplantar keratoderma and ventricular cardiomyopathy. CHS results from an autosomal recessive mutation on the 3' end of desmoplakin (DSP) truncating the full length protein. The Dsp(rul) mouse provides a new model to investigate the pathogenesis of CHS, as well as the underlying basic biology of the adhesion molecules coded by the desmosomal genes.


Asunto(s)
Cardiomiopatías/genética , Desmoplaquinas/genética , Enfermedades del Cabello/genética , Cabello/patología , Queratodermia Palmoplantar/genética , Animales , Secuencia de Bases , Cardiomiopatía Dilatada , Mutación del Sistema de Lectura , Ligamiento Genético/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
7.
Genome Biol ; 13(8): R72, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22916792

RESUMEN

BACKGROUND: The FVB/NJ mouse strain has its origins in a colony of outbred Swiss mice established in 1935 at the National Institutes of Health. Mice derived from this source were selectively bred for sensitivity to histamine diphosphate and the B strain of Friend leukemia virus. This led to the establishment of the FVB/N inbred strain, which was subsequently imported to the Jackson Laboratory and designated FVB/NJ. The FVB/NJ mouse has several distinct characteristics, such as large pronuclear morphology, vigorous reproductive performance, and consistently large litters that make it highly desirable for transgenic strain production and general purpose use. RESULTS: Using next-generation sequencing technology, we have sequenced the genome of FVB/NJ to approximately 50-fold coverage, and have generated a comprehensive catalog of single nucleotide polymorphisms, small insertion/deletion polymorphisms, and structural variants, relative to the reference C57BL/6J genome. We have examined a previously identified quantitative trait locus for atherosclerosis susceptibility on chromosome 10 and identify several previously unknown candidate causal variants. CONCLUSION: The sequencing of the FVB/NJ genome and generation of this catalog has increased the number of known variant sites in FVB/NJ by a factor of four, and will help accelerate the identification of the precise molecular variants that are responsible for phenotypes observed in this widely used strain.


Asunto(s)
Genoma , Ratones Endogámicos C57BL/genética , Ratones Endogámicos/genética , Análisis de Secuencia de ADN/métodos , Animales , Femenino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA