Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Cell Endocrinol ; 589: 112235, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38621656

RESUMEN

Luteinizing hormone (LH) is essential for reproduction, controlling ovulation and steroidogenesis. Its receptor (LHR) recruits various transducers leading to the activation of a complex signaling network. We recently identified iPRC1, the first variable fragment from heavy-chain-only antibody (VHH) interacting with intracellular loop 3 (ICL3) of the follicle-stimulating hormone receptor (FSHR). Because of the high sequence similarity of the human FSHR and LHR (LHCGR), here we examined the ability of the iPRC1 intra-VHH to modulate LHCGR activity. In this study, we demonstrated that iPRC1 binds LHCGR, to a greater extent when the receptor was stimulated by the hormone. In addition, it decreased LH-induced cAMP production, cAMP-responsive element-dependent transcription, progesterone and testosterone production. These impairments are not due to Gs nor ß-arrestin recruitment to the LHCGR. Consequently, iPRC1 is the first intra-VHH to bind and modulate LHCGR biological activity, including steroidogenesis. It should help further understand signaling mechanisms elicited at this receptor and their outcomes on reproduction.


Asunto(s)
Hormona Luteinizante , Receptores de HL , Transducción de Señal , Receptores de HL/metabolismo , Receptores de HL/genética , Humanos , Transducción de Señal/efectos de los fármacos , Hormona Luteinizante/metabolismo , Animales , AMP Cíclico/metabolismo , Unión Proteica , Progesterona/metabolismo , Receptores de HFE/metabolismo , Receptores de HFE/genética , Testosterona/metabolismo , Testosterona/biosíntesis , Células HEK293 , Proteínas de Unión al GTP/metabolismo , Esteroides/biosíntesis , Esteroides/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569429

RESUMEN

We demonstrate here that highly sensitive in vitro bioassays for FSH, TSH, and PTH can be set up in mouse Leydig Tumor Cells (mLTC), in addition to the normal LH/CG bioassay, after they were transfected with expression vectors encoding the corresponding Gs Protein-Coupled Receptors (GsPCR), such as FSHR, TSHR, or PTHR. Although the ß2 adrenergic receptor is also a GsPCR, its expression in mLTC led to a significant but very low cAMP response compared to those observed with FSH, TSH, or PTH. Similarly, after transfection of the GiPCR MT1 melatonin receptor, we did not observe any inhibitory effect by melatonin of the LH or hCG stimulation. Interestingly, after transfection of mLTC with the human kisspeptin receptor (hKpR), which is a GqPCR, we observed a dose-dependent synergy of 10-12-10-7 M kisspeptin variants with a fixed concentration of 0.3 nM LH or hCG. Without any exogenous receptor transfection, a 2 h preincubation with OT or AVP led to a dose-dependent cAMP response to a fixed dose of LH or hCG. Therefore, highly sensitive in vitro bioassays for various hormones and other GPCR ligands can be set up in mLTC to measure circulating concentrations in only 3-10 µL of blood or other body fluids. Nevertheless, the development of an LHRKO mLTC cell line will be mandatory to obtain strict specificity for these bioassays to eliminate potential cross-reaction with LH or CG.


Asunto(s)
Kisspeptinas , Receptores de HL , Ratones , Animales , Humanos , Receptores de HL/genética , Receptores de HL/metabolismo , Kisspeptinas/metabolismo , Ligandos , AMP Cíclico/metabolismo , Transducción de Señal , Receptores Acoplados a Proteínas G , Hormona Folículo Estimulante/farmacología , Hormona Folículo Estimulante/metabolismo , Tirotropina/metabolismo , Gonadotropina Coriónica/metabolismo
3.
Int J Mol Sci ; 22(18)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34576014

RESUMEN

Follicle-stimulating hormone receptor (FSHR) plays a key role in reproduction through the activation of multiple signaling pathways. Low molecular weight (LMW) ligands composed of biased agonist properties are highly valuable tools to decipher complex signaling mechanisms as they allow selective activation of discrete signaling cascades. However, available LMW FSHR ligands have not been fully characterized yet. In this context, we explored the pharmacological diversity of three benzamide and two thiazolidinone derivatives compared to FSH. Concentration/activity curves were generated for Gαs, Gαq, Gαi, ß-arrestin 2 recruitment, and cAMP production, using BRET assays in living cells. ERK phosphorylation was analyzed by Western blotting, and CRE-dependent transcription was assessed using a luciferase reporter assay. All assays were done in either wild-type, Gαs or ß-arrestin 1/2 CRISPR knockout HEK293 cells. Bias factors were calculated for each pair of read-outs by using the operational model. Our results show that each ligand presented a discrete pharmacological efficacy compared to FSH, ranging from super-agonist for ß-arrestin 2 recruitment to pure Gαs bias. Interestingly, LMW ligands generated kinetic profiles distinct from FSH (i.e., faster, slower or transient, depending on the ligand) and correlated with CRE-dependent transcription. In addition, clear system biases were observed in cells depleted of either Gαs or ß-arrestin genes. Such LMW properties are useful pharmacological tools to better dissect the multiple signaling pathways activated by FSHR and assess their relative contributions at the cellular and physio-pathological levels.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/farmacología , Receptores de HFE/agonistas , Arrestina beta 2/farmacología , AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Cinética
4.
MAbs ; 13(1): 1961349, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34432559

RESUMEN

MAbTope is a docking-based method for the determination of epitopes. It has been used to successfully determine the epitopes of antibodies with known 3D structures. However, during the antibody discovery process, this structural information is rarely available. Although we already have evidence that homology models of antibodies could be used instead of their 3D structure, the choice of the template, the methodology for homology modeling and the resulting performance still have to be clarified. Here, we show that MAbTope has the same performance when working with homology models of the antibodies as compared to crystallographic structures. Moreover, we show that even low-quality models can be used. We applied MAbTope to determine the epitope of dupilumab, an anti- interleukin 4 receptor alpha subunit therapeutic antibody of unknown 3D structure, that we validated experimentally. Finally, we show how the MAbTope-determined epitopes for a series of antibodies targeting the same protein can be used to predict competitions, and demonstrate the accuracy with an experimentally validated example.3D: three-dimensionalRMSD: root mean square deviationCDR: complementary-determining regionCPU: central processing unitsVH: heavy chain variable regionVL: light chain variable regionscFv: single-chain variable fragmentsVHH: single-chain antibody variable regionIL4Rα: Interleukin 4 receptor alpha chainSPR: surface plasmon resonancePDB: protein data bankHEK293: Human embryonic kidney 293 cellsEDTA: Ethylenediaminetetraacetic acidFBS: Fetal bovine serumANOVA: Analysis of varianceEGFR: Epidermal growth factor receptorPE: PhycoerythrinAPC: AllophycocyaninFSC: forward scatterSSC: side scatterWT: wild typeKeywords: MAbTope, Epitope Mapping, Molecular docking, Antibody modeling, Antibody-antigen docking.


Asunto(s)
Anticuerpos Monoclonales Humanizados/inmunología , Antígenos/inmunología , Mapeo Epitopo , Epítopos , Subunidad alfa del Receptor de Interleucina-4/inmunología , Simulación del Acoplamiento Molecular , Anticuerpos Monoclonales Humanizados/química , Anticuerpos Monoclonales Humanizados/metabolismo , Antígenos/genética , Antígenos/metabolismo , Sitios de Unión de Anticuerpos , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Subunidad alfa del Receptor de Interleucina-4/genética , Subunidad alfa del Receptor de Interleucina-4/metabolismo , Mutación , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
5.
Arch Toxicol ; 95(5): 1671-1681, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33638691

RESUMEN

Dichlorodiphenyltrichloroethane (p,p'DDT) is an endocrine-disrupting chemical (EDC). Several studies showed an association between p,p'DDT exposure and reprotoxic effects. We showed that p,p'DDT was a positive allosteric modulator of human follitropin receptor (FSHR). In contrast, we demonstrated that p,p'DDT decreased the cyclic AMP (cAMP) production induced by human choriogonadotropin (hCG). This study evaluated further the effects of p,p'DDT on Gs-, ß-arrestin 2- and steroidogenesis pathways induced by hCG or luteinizing hormone (LH). We used Chinese hamster ovary cells line stably expressing hCG/LHR. The effects of 10-100 µM p,p'DDT on cAMP production and on ß-arrestin 2 recruitment were measured using bioluminescence and time-resolved resonance energy transfer technology. The impact of 100 µM of p,p'DDT on steroid secretion was analysed in murine Leydig tumor cell line (mLTC-1). In cAMP assays, 100 µM p,p'DDT increased the EC50 by more than 300% and reduced the maximum response of the hCG/LHR to hCG and hLH by 30%. This inhibitory effect was also found in human granulosa cells line and in mLTC-1 cells. Likewise, 100 µM p,p'DDT decreased the hCG- and hLH-promoted ß-arrestin 2 recruitment down to 14.2 and 26.6%, respectively. Moreover, 100 µM p,p'DDT decreased by 30 and 47% the progesterone secretion induced by hCG or hLH, respectively, without affecting testosterone secretion. This negative effect of p,p'DDT was independent of cytotoxicity. p,p'DDT acted as a negative allosteric modulator of the hCG/LHR signalling. This emphasizes the importance of analyzing all receptor-downstream pathways to fully understand the deleterious effects of EDC on human health.


Asunto(s)
DDT/toxicidad , Disruptores Endocrinos/toxicidad , Animales , Células CHO , Gonadotropina Coriónica , Cricetinae , Cricetulus , AMP Cíclico , Femenino , Humanos , Células Intersticiales del Testículo , Hormona Luteinizante/metabolismo , Masculino , Ratones , Receptores Acoplados a Proteínas G , Receptores de HL , Transducción de Señal
6.
J Clin Endocrinol Metab ; 106(2): e534-e550, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33119067

RESUMEN

CONTEXT: Follicle-stimulating hormone (FSH) plays an essential role in gonadal function. Loss-of-function mutations in the follicle-stimulating hormone receptor (FSHR) are an infrequent cause of primary ovarian failure. OBJECTIVE: To analyze the molecular physiopathogenesis of a novel mutation in the FSHR identified in a woman with primary ovarian failure, employing in vitro and in silico approaches, and to compare the features of this dysfunctional receptor with those shown by the trafficking-defective D408Y FSHR mutant. METHODS: Sanger sequencing of the FSHR cDNA was applied to identify the novel mutation. FSH-stimulated cyclic adenosine monophosphate (cAMP) production, ERK1/2 phosphorylation, and desensitization were tested in HEK293 cells. Receptor expression was analyzed by immunoblotting, receptor-binding assays, and flow cytometry. Molecular dynamics simulations were performed to determine the in silico behavior of the mutant FSHRs. RESULTS: A novel missense mutation (I423T) in the second transmembrane domain of the FSHR was identified in a woman with normal pubertal development but primary amenorrhea. The I423T mutation slightly impaired plasma membrane expression of the mature form of the receptor and severely impacted on cAMP/protein kinase A signaling but much less on ß-arrestin-dependent ERK1/2 phosphorylation. Meanwhile, the D408Y mutation severely affected membrane expression, with most of the FSH receptor located intracellularly, and both signal readouts tested. Molecular dynamics simulations revealed important functional disruptions in both mutant FSHRs, mainly the loss of interhelical connectivity in the D408Y FSHR. CONCLUSIONS: Concurrently, these data indicate that conformational differences during the inactive and active states account for the distinct expression levels, differential signaling, and phenotypic expression of the I423T and D408Y mutant FSHRs.


Asunto(s)
Insuficiencia Ovárica Primaria/genética , Receptores de HFE/genética , Adulto , Amenorrea/genética , Amenorrea/metabolismo , Sustitución de Aminoácidos , Familia , Femenino , Hormona Folículo Estimulante/farmacología , Células HEK293 , Humanos , Isoleucina/genética , Mutación con Pérdida de Función/genética , Modelos Moleculares , Mutación Missense , Linaje , Insuficiencia Ovárica Primaria/metabolismo , Receptores de HFE/agonistas , Receptores de HFE/química , Receptores de HFE/metabolismo , Treonina/genética
7.
Metabolism ; 115: 154458, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33278413

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is often associated with higher levels of LH, and arrested ovarian follicular growth. The direct impact of high LH on FSH mediated metabolic responses in PCOS patients is not clearly understood. METHOD: In order to investigate the impact of FSH and LH on glucose metabolism in preovulatory granulosa cells (GCs), we used [U14C]-2 deoxyglucose, D-[U14C]-glucose or 2-NBD glucose to analyse glucose uptake and its incorporation into glycogen. To reproduce the high androgenic potential in PCOS patients, we administered hCG both in vitro and in vivo. The role of IRS-2/PI3K/Akt2 pathway was studied after knockdown with specific siRNA. Immunoprecipitation and specific assays were used for the assessment of IRS-2, glycogen synthase and protein phosphatase 1. Furthermore, we examined the in vivo effects of hCG on FSH mediated glycogen increase in normal and PCOS rat model. HEK293 cells co-expressing FSHR and LHR were used to demonstrate glucose uptake and BRET change by FSH and hCG. RESULTS: In normal human and rat granulosa cells, FSH is more potent than hCG in stimulating glucose uptake, however glycogen synthesis was significantly upregulated only by FSH through increase in activity of glycogen synthase via IRS-2/PI3K/Akt2 pathway. On the contrary, an impaired FSH-stimulated glucose uptake and glycogen synthesis in granulosa cells of PCOS-patients indicated a selective defect in FSHR activation. Further, in normal human granulosa cells, and in immature rat model, the impact of hCG on FSH responses was such that it inhibited the FSH-mediated glucose uptake as well as glycogen synthesis through inhibition of FSH-stimulated IRS-2 expression. These findings were further validated in HEK293 cells overexpressing Flag-LHR and HA-FSHR, where high hCG inhibited the FSH-stimulated glucose uptake. Notably, an increased BRET change was observed in HEK293 cells expressing FSHR-Rluc8 and LHR-Venus possibly suggesting increased heteromerization of LHR and FSHR in the presence of both hCG and FSH in comparison to FSH or hCG alone. CONCLUSION: Our findings confirm a selective attenuation of metabolic responses to FSH such as glucose uptake and glycogen synthesis by high activation level of LHR leading to the inhibition of IRS-2 pathway, resulting in depleted glycogen stores and follicular growth arrest in PCOS patients.


Asunto(s)
Hormona Folículo Estimulante/farmacología , Glucosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Hormona Luteinizante/farmacología , Síndrome del Ovario Poliquístico/metabolismo , Animales , Modelos Animales de Enfermedad , Estradiol/farmacología , Femenino , Células de la Granulosa/metabolismo , Células HEK293 , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratas
8.
iScience ; 23(12): 101812, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33299978

RESUMEN

Classically, follicle-stimulating hormone receptor (FSHR)-driven cAMP-mediated signaling boosts human ovarian follicle growth and oocyte maturation. However, contradicting in vitro data suggest a different view on physiological significance of FSHR-mediated cAMP signaling. We found that the G-protein-coupled estrogen receptor (GPER) heteromerizes with FSHR, reprogramming cAMP/death signals into proliferative stimuli fundamental for sustaining oocyte survival. In human granulosa cells, survival signals are missing at high FSHR:GPER ratio, which negatively impacts follicle maturation and strongly correlates with preferential Gαs protein/cAMP-pathway coupling and FSH responsiveness of patients undergoing controlled ovarian stimulation. In contrast, FSHR/GPER heteromers triggered anti-apoptotic/proliferative FSH signaling delivered via the Gßγ dimer, whereas impairment of heteromer formation or GPER knockdown enhanced the FSH-dependent cell death and steroidogenesis. Therefore, our findings indicate how oocyte maturation depends on the capability of GPER to shape FSHR selective signals, indicating hormone receptor heteromers may be a marker of cell proliferation.

9.
Artículo en Inglés | MEDLINE | ID: mdl-31396162

RESUMEN

Recombinant follicle-stimulating hormone (FSH) (follitropin alfa) and biosimilar preparations are available for clinical use. They have specific FSH activity and a unique glycosylation profile dependent on source cells. The aim of the study is to compare the originator (reference) follitropin alfa (Gonal-f®)- with biosimilar preparations (Bemfola® and Ovaleap®)-induced cellular responses in vitro. Gonadotropin N-glycosylation profiles were analyzed by ELISA lectin assay, revealing preparation specific-patterns of glycan species (Kruskal-Wallis test; p < 0.05, n = 6) and by glycotope mapping. Increasing concentrations of Gonal-f® or biosimilar (1 × 10-3-1 × 103 ng/ml) were used for treating human primary granulosa lutein cells (hGLC) and FSH receptor (FSHR)-transfected HEK293 cells in vitro. Intracellular cAMP production, Ca2+ increase and ß-arrestin 2 recruitment were evaluated by BRET, CREB, and ERK1/2 phosphorylation by Western blotting. 12-h gene expression, and 8- and 24-h progesterone and estradiol synthesis were measured by real-time PCR and immunoassay, respectively. We found preparation-specific glycosylation patterns by lectin assay (Kruskal-Wallis test; p < 0.001; n = 6), and similar cAMP production and ß-arrestin 2 recruitment in FSHR-transfected HEK293 cells (cAMP EC50 range = 12 ± 0.9-24 ± 1.7 ng/ml; ß-arrestin 2 EC50 range = 140 ± 14.1-313 ± 18.7 ng/ml; Kruskal-Wallis test; p ≥ 0.05; n = 4). Kinetics analysis revealed that intracellular Ca2+ increased upon cell treatment by 4 µg/ml Gonal-f®, while equal concentrations of biosimilars failed to induced a response (Kruskal-Wallis test; p < 0.05; n = 3). All preparations induced both 8 and 24 h-progesterone and estradiol synthesis in hGLC, while no different EC50s were demonstrated (Kruskal-Wallis test; p > 0.05; n = 5). Apart from preparation-specific intracellular Ca2+ increases achieved at supra-physiological hormone doses, all compounds induced similar intracellular responses and steroidogenesis, reflecting similar bioactivity, and overall structural homogeneity.

10.
Methods Mol Biol ; 1957: 177-194, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30919355

RESUMEN

ß-arrestins are so-called hub proteins: they make complexes with many different partners, assembling functional complexes, and thereby fulfilling their biological function. The importance of this process in G protein-coupled receptor (GPCR) signalling has been fully demonstrated for many different receptors. For direct interactions, determining the interface regions, on ß-arrestins and on the partners, is crucial for understanding the function of the complex. Indeed, this brings information on which proteins can interact simultaneously with ß-arrestins, or, on the contrary, which partners are exclusive. We present here a method in two steps: protein-protein docking allows finding a limited number of peptides predicted to be involved in the interaction, and then experimental approaches that might be used for validating the prediction.


Asunto(s)
Biología Molecular/métodos , beta-Arrestinas/metabolismo , Secuencia de Aminoácidos , Fluorescencia , Humanos , Interferometría , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Reproducibilidad de los Resultados , beta-Arrestinas/química
11.
Endocrinology ; 159(8): 3020-3035, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982321

RESUMEN

FSH is synthesized in the pituitary by gonadotrope cells. By binding to and interacting with its cognate receptor [FSH receptor (FSHR)] in the gonads, this gonadotropin plays a key role in the control of gonadal function and reproduction. Upon activation, the FSHR undergoes conformational changes leading to transduction of intracellular signals, including dissociation of G protein complexes into components and activation of several associated interacting partners, which concertedly regulate downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of several mechanisms employed by this receptor to transduce intracellular signals in response to the FSH stimulus. This complex network of signaling pathways allows for a fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its multiple components vary depending on the cell context, cell developmental stage, and concentration of associated receptors and corresponding ligands. Activation of these multiple signaling modules eventually converge to the hormone-integrated biological response, including survival, proliferation and differentiation of target cells, synthesis and secretion of paracrine/autocrine regulators, and, at the molecular level, functional selectivity and differential gene expression. In this mini-review, we discuss the complexity of FSHR-mediated intracellular signals activated in response to ligand stimulation. A better understanding of the signaling pathways involved in FSH action might potentially influence the development of new therapeutic strategies for reproductive disorders.


Asunto(s)
Hormona Folículo Estimulante/metabolismo , Receptores de HFE/metabolismo , Reproducción , Transducción de Señal , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Expresión Génica , Humanos , Ligandos
12.
Cell Rep ; 21(10): 2855-2867, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212031

RESUMEN

Endocytic trafficking is a critical mechanism for cells to decode complex signaling pathways, including those activated by G-protein-coupled receptors (GPCRs). Heterogeneity in the endosomal network enables GPCR activity to be spatially restricted between early endosomes (EEs) and the recently discovered endosomal compartment, the very early endosome (VEE). However, the molecular machinery driving GPCR activity from the VEE is unknown. Using luteinizing hormone receptor (LHR) as a prototype GPCR for this compartment, along with additional VEE-localized GPCRs, we identify a role for the adaptor protein APPL1 in rapid recycling and endosomal cAMP signaling without impacting the EE-localized ß2-adrenergic receptor. LHR recycling is driven by receptor-mediated Gαs/cAMP signaling from the VEE and PKA-dependent phosphorylation of APPL1 at serine 410. Receptor/Gαs endosomal signaling is localized to microdomains of heterogeneous VEE populations and regulated by APPL1 phosphorylation. Our study uncovers a highly integrated inter-endosomal communication system enabling cells to tightly regulate spatially encoded signaling.


Asunto(s)
Endosomas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , AMP Cíclico/metabolismo , Citometría de Flujo , Células HEK293 , Humanos , Inmunoprecipitación , Fosforilación , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología
13.
Mol Hum Reprod ; 23(10): 685-697, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29044421

RESUMEN

STUDY QUESTION: Are four urinary hCG/menotropin (hMG) and one recombinant preparation characterized by different molecular features and do they mediate specific intracellular signaling and steroidogenesis? SUMMARY ANSWER: hCG and hMG preparations have heterogeneous compositions and mediate preparation-specific cell signaling and early steroidogenesis, although similar progesterone plateau levels are achieved in 24 h-treated human primary granulosa cells in vitro. WHAT IS KNOWN ALREADY: hCG is the pregnancy hormone marketed as a drug for ARTs to induce final oocyte maturation and ovulation, and to support FSH action. Several hCG formulations are commercially available, differing in source, purification methods and biochemical composition. STUDY DESIGN, SIZE, DURATION: Commercial hCG preparations for ART or research purposes were compared in vitro. PARTICIPANTS/MATERIALS, SETTING, METHODS: The different preparations were quantified by immunoassay with calibration against the hCG standard (Fifth IS; NIBSC 07/364). Immunoreactivity patterns, isoelectric points and oligosaccharide contents of hCGs were evaluated using reducing and non-reducing Western blotting, capillary isoelectric-focusing immunoassay and lectin-ELISA, respectively. Functional studies were performed in order to evaluate intracellular and total cAMP, progesterone production and ß-arrestin 2 recruitment by ELISA and BRET, in both human primary granulosa lutein cells (hGLC) and luteinizing hormone (LH)/hCG receptor (LHCGR)-transfected HEK293 cells, stimulated by increasing hormone concentrations. Statistical analysis was performed using two-way ANOVA and Bonferroni post-test or Mann-Whitney's U-test as appropriate. MAIN RESULTS AND THE ROLE OF CHANCE: Heterogeneous profiles were found among preparations, revealing specific molecular weight patterns (20-75 KDa range), isoelectric points (4.0-9.0 pI range) and lectin binding (P < 0.05; n = 7-10). These drug-specific compositions were linked to different potencies on cAMP production (EC50 1.0-400.0 ng/ml range) and ß-arrestin 2 recruitment (EC50 0.03-2.0 µg/ml) in hGLC and transfected HEK293 cells (P < 0.05; n = 3-5). In hGLC, these differences were reflected by preparation-specific 8-h progesterone production although similar plateau levels of progesterone were acheived by 24-h treatment (P ≥ 0.05; n = 3). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The biological activity of commercial hCG/hMG preparations is provided in International Units (IU) by in-vivo bioassay and calibration against an International Standard, although it is an unsuitable unit of measure for in-vitro studies. The re-calibration against recombinant hCG,quantified in grams, is based on the assumption that all of the isoforms and glycosylation variants have similar immunoreactivity. WIDER IMPLICATIONS OF THE FINDINGS: hCG/hMG preparation-specific cell responses in vitro may be proposed to ART patients affected by peculiar ovarian response, such as that caused by polycystic ovary syndrome. Otherwise, all the preparations available for ART may provide a similar clinical outcome in healthy women. STUDY FUNDING AND COMPETING INTEREST(S): This study was supported by a grant of the Italian Ministry of Education, University and Research (PRIN 2015XCR88M). The authors have no conflict of interest.


Asunto(s)
Gonadotropina Coriónica/química , Fármacos para la Fertilidad Femenina/química , Células de la Granulosa/efectos de los fármacos , Menotropinas/química , Progesterona/biosíntesis , Transducción de Señal/efectos de los fármacos , Adulto , Gonadotropina Coriónica/farmacología , AMP Cíclico/biosíntesis , Femenino , Fármacos para la Fertilidad Femenina/farmacología , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/metabolismo , Regulación de la Expresión Génica , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Células HEK293 , Humanos , Punto Isoeléctrico , Fase Luteínica/fisiología , Menotropinas/farmacología , Peso Molecular , Inducción de la Ovulación/métodos , Embarazo , Cultivo Primario de Células , Receptores de HL/genética , Receptores de HL/metabolismo , Transfección , Arrestina beta 2/genética , Arrestina beta 2/metabolismo
14.
MAbs ; 9(5): 735-741, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28475474

RESUMEN

Le STUDIUM conference was held November 24-25, 2016 in Tours, France as a satellite workshop of the 5th meeting of the French GDR 3545 on "G Protein-Coupled Receptors (GPCRs) -From Physiology to Drugs," which was held in Tours during November 22-24, 2016. The conference gathered speakers from academia and industry considered to be world leaders in the molecular pharmacology and signaling of GPCRs, with a particular interest in the development of therapeutic GPCR antibodies (Abs). The main topics were new advances and challenges in the development of antibodies targeting GPCRs and their potential applications to the study of the structure and function of GPCRs, as well as their implication in physiology and pathophysiology. The conference included 2 sessions, with the first dedicated to the recent advances in methodological strategies used for GPCR immunization using thermo-stabilized and purified GPCRs, and the development of various formats of Abs such as monoclonal IgG, single-chain variable fragments and nanobodies (Nbs) by in vitro and in silico approaches. The second session focused on GPCR Nbs as a "hot" field of research on GPCRs. This session started with discussion of the pioneering Nbs developed against GPCRs and their application to structural studies, then transitioned to talks on original ex vivo and in vivo studies on GPCR-selective Nbs showing promising therapeutic applications of Nbs in important physiologic systems, such as the central nervous and the immune systems, as well as in cancer. The conference ended with the consensus that Abs and especially Nbs are opening a new era of research on GPCR structure, pharmacology and pathophysiology.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Anticuerpos de Dominio Único , Animales , Congresos como Asunto , Humanos
15.
Sci Rep ; 7(1): 940, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28424471

RESUMEN

Human luteinizing hormone (LH) and chorionic gonadotropin (hCG) have been considered biologically equivalent because of their structural similarities and their binding to the same receptor; the LH/CGR. However, accumulating evidence suggest that LH/CGR differentially responds to the two hormones triggering differential intracellular signaling and steroidogenesis. The mechanistic basis of such differential responses remains mostly unknown. Here, we compared the abilities of recombinant rhLH and rhCG to elicit cAMP, ß-arrestin 2 activation, and steroidogenesis in HEK293 cells and mouse Leydig tumor cells (mLTC-1). For this, BRET and FRET technologies were used allowing quantitative analyses of hormone activities in real-time and in living cells. Our data indicate that rhLH and rhCG differentially promote cell responses mediated by LH/CGR revealing interesting divergences in their potencies, efficacies and kinetics: rhCG was more potent than rhLH in both HEK293 and mLTC-1 cells. Interestingly, partial effects of rhLH were found on ß-arrestin recruitment and on progesterone production compared to rhCG. Such a link was further supported by knockdown experiments. These pharmacological differences demonstrate that rhLH and rhCG act as natural biased agonists. The discovery of novel mechanisms associated with gonadotropin-specific action may ultimately help improve and personalize assisted reproduction technologies.


Asunto(s)
Gonadotropina Coriónica/metabolismo , AMP Cíclico/metabolismo , Hormona Luteinizante/metabolismo , beta-Arrestina 1/metabolismo , Animales , Gonadotropina Coriónica/genética , Células HEK293 , Humanos , Hormona Luteinizante/genética , Ratones , Progesterona/metabolismo , Receptores de HL/metabolismo , Proteínas Recombinantes/metabolismo
16.
FASEB J ; 30(12): 4180-4191, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27609774

RESUMEN

The Salmonella Rck outer membrane protein binds to the cell surface, which leads to bacterial internalization via a Zipper mechanism. This invasion process requires induction of cellular signals, including phosphorylation of tyrosine proteins, and activation of c-Src and PI3K, which arises as a result of an interaction with a host cell surface receptor. In this study, epidermal growth factor receptor (EGFR) was identified as the cell signaling receptor required for Rck-mediated adhesion and internalization. First, Rck-mediated adhesion and internalization were shown to be altered when EGFR expression and activity were modulated. Then, immunoprecipitations were performed to demonstrate the Rck-EGFR interaction. Furthermore, surface plasmon resonance biosensor and homogeneous time-resolved fluorescence technologies were used to demonstrate the direct interaction of Rck with the extracellular domain of human EGFR. Finally, our study strongly suggests a noncompetitive binding of Rck and EGF to EGFR. Overall, these results demonstrate that Rck is able to bind to EGFR and thereby establish a tight adherence to provide a signaling cascade, which leads to internalization of Rck-expressing bacteria.-Wiedemann, A., Mijouin, L., Ayoub, M. A., Barilleau, E., Canepa, S., Teixeira-Gomes, A. P., Le Vern, Y., Rosselin, M., Reiter, E., Velge, P. Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion.


Asunto(s)
Membrana Celular/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Salmonella/metabolismo , Proteína Tirosina Quinasa CSK , Línea Celular , Escherichia coli , Fosforilación , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo
17.
Front Cell Dev Biol ; 4: 76, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27489855

RESUMEN

Posttranslational modifications occurring during the biosynthesis of G protein-coupled receptors include glycosylation and palmitoylation at conserved cysteine residues located in the carboxyl-terminus of the receptor. In a number of these receptors, these modifications play an important role in receptor function and particularly, in intracellular trafficking. In the present study, the three cysteine residues present in the carboxyl-terminus of the human FSHR were replaced with glycine by site-directed mutagenesis. Wild-type and mutant (Cys627/629/655Gly) FSHRs were then transiently expressed in HEK-293 cells and analyzed for cell-surface plasma membrane expression, agonist-stimulated signaling and internalization, and postendocytic processing in the absence and presence of lysosome and/or proteasome inhibitors. Compared with the wild-type FSHR, the triple mutant FSHR exhibited ~70% reduction in plasma membrane expression as well as a profound attenuation in agonist-stimulated cAMP production and ERK1/2 phosphorylation. Incubation of HEK-293 cells expressing the wild-type FSHR with 2-bromopalmitate (palmitoylation inhibitor) for 6 h, decreased plasma membrane expression of the receptor by ~30%. The internalization kinetics and ß-arrestin 1 and 2 recruitment were similar between the wild-type and triple mutant FSHR as disclosed by assays performed in non-equilibrium binding conditions and by confocal microscopy. Cells expressing the mutant FSHR recycled the internalized FSHR back to the plasma membrane less efficiently than those expressing the wild-type FSHR, an effect that was counteracted by proteasome but not by lysosome inhibition. These results indicate that replacement of the cysteine residues present in the carboxyl-terminus of the FSHR, impairs receptor trafficking from the endoplasmic reticulum/Golgi apparatus to the plasma membrane and its recycling from endosomes back to the cell surface following agonist-induced internalization. Since in the FSHR these cysteine residues are S-palmitoylated, the data presented emphasize on this posttranslational modification as an important factor for both upward and downward trafficking of this receptor.

18.
Mol Cell Endocrinol ; 437: 11-21, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27502035

RESUMEN

Gonadotropin signaling classically involves proliferative, steroidogenic and apoptotic stimuli. In this study, we used the human granulosa cell line hGL5 to demonstrate how follicle-stimulating hormone (FSH) and luteinizing hormone (LH) differently control proliferative or apoptotic signals, revealing novel intrinsic properties of their receptors (FSHR, LHCGR). We found that, in this tumor-like cell line, the expression of endogenous FSHR and LHCGR is serum-dependent, but both receptors were unable to activate the canonical cAMP/PKA pathway upon gonadotropin stimulation, failing to produce cAMP, progesterone and G protein-coupled receptor (GPCR)-mediated apoptosis in vitro. Conversely, ligand treatment resulted in FSHR- and LHCGR-mediated ERK1/2 phosphorylation and cell proliferation due to receptor coupling to ß-arrestins. The inactive cAMP/PKA pathway was unlocked by siRNA-mediated knock-down of ß-arrestin 1 and 2, leading to progesterone synthesis and apoptosis. Surprisingly, FSH, but not LH treatment accelerated the cAMP/PKA-mediated apoptosis after ß-arrestin silencing, an effect which could be reproduced by overexpressing the FSHR, but not the LHCGR. This work demonstrates that the expression of FSHR and LHCGR can be induced in hGL5 cells but that the FSHR-dependent cAMP/PKA pathway is constitutively silenced, possibly to protect cells from FSHR-cAMP-PKA-induced apoptosis. Also, we revealed previously unrecognized features intrinsic to the two structurally similar gonadotropin receptors, oppositely resulting in the regulation of life and death signals in vitro.


Asunto(s)
Apoptosis , Receptores de HFE/metabolismo , Receptores de Gonadotropina/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Caspasa 3/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Silenciador del Gen , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Humanos , Espacio Intracelular/metabolismo , Progesterona/biosíntesis , Receptores de HL
19.
Mol Cell Endocrinol ; 436: 10-22, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27424143

RESUMEN

Biased signaling has recently emerged as an interesting means to modulate the function of many G protein-coupled receptors (GPCRs). Previous studies reported two negative allosteric modulators (NAMs) of follicle-stimulating hormone receptor (FSHR), ADX68692 and ADX68693, with differential effects on FSHR-mediated steroidogenesis and ovulation. In this study, we attempted to pharmacologically profile these NAMs on the closely related luteinizing hormone/chorionic gonadotropin hormone receptor (LH/CGR) with regards to its canonical Gs/cAMP pathway as well as to ß-arrestin recruitment in HEK293 cells. The NAMs' effects on cAMP, progesterone and testosterone production were also assessed in murine Leydig tumor cell line (mLTC-1) as well as rat primary Leydig cells. We found that both NAMs strongly antagonized LH/CGR signaling in the different cell models used with ADX68693 being more potent than ADX68692 to inhibit hCG-induced cAMP production in HEK293, mLTC-1 and rat primary Leydig cells as well as ß-arrestin 2 recruitment in HEK293 cells. Interestingly, differential antagonism of the two NAMs on hCG-promoted steroidogenesis in mLTC-1 and rat primary Leydig cells was observed. Indeed, a significant inhibition of testosterone production by the two NAMs was observed in both cell types, whereas progesterone production was only inhibited by ADX68693 in rat primary Leydig cells. In addition, while ADX68693 totally abolished testosterone production, ADX68692 had only a partial effect in both mLTC-1 and rat primary Leydig cells. These observations suggest biased effects of the two NAMs on LH/CGR-dependent pathways controlling steroidogenesis. Interestingly, the pharmacological profiles of the two NAMs with respect to steroidogenesis were found to differ from that previously shown on FSHR. This illustrates the complexity of signaling pathways controlling FSHR- and LH/CGR-mediated steroidogenesis, suggesting differential implication of cAMP and ß-arrestins mediated by FSHR and LH/CGR. Together, our data demonstrate that ADX68692 and ADX68693 are biased NAMs at the LH/CGR in addition to the FSHR. These pharmacological characteristics are important to consider for potential contraceptive and therapeutic applications based on such compounds.


Asunto(s)
Benzamidas/farmacología , Hormona Luteinizante/metabolismo , Receptores de HFE/metabolismo , Receptores de HL/metabolismo , Esteroides/biosíntesis , Regulación Alostérica/efectos de los fármacos , Animales , Gonadotropina Coriónica/farmacología , AMP Cíclico/metabolismo , Expresión Génica/efectos de los fármacos , Genes Reporteros , Células HEK293 , Humanos , Cinética , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Masculino , Ratas , beta-Arrestinas/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-26379624

RESUMEN

Gonadotropin receptors belong to the super family of G protein-coupled receptors and mediate the physiological effects of follicle-stimulating hormone (FSHR) and luteinizing hormone (LHR). Their central role in the control of reproductive function has made them the focus of intensive studies. Upon binding to their cognate hormone, they trigger complex signaling and trafficking mechanisms that are tightly regulated in concentration, time, and space. Classical cellular assays often fail to capture all these dynamics. Here, we describe the use of various bioluminescence and fluorescence resonance energy transfer (BRET and FRET) assays to investigate the activation and regulation of FSHR and LHR in real-time, in living cells (i.e., transiently expressed in human embryonic kidney 293 cells). Indeed, the dynamics of hormone-mediated heterotrimeric G protein activation, cyclic adenosine-monophosphate (cAMP) production, calcium release, ß-arrestin 2 recruitment, and receptor internalization/recycling was assessed. Kinetics and dose-response analyses confirmed the expected pharmacological and signaling properties of hFSHR and hLHR but revealed interesting characteristics when considering the two major pathways (cAMP and ß-arrestin 2) of the two receptors assessed by BRET. Indeed, the EC50 values were in picomolar range for cAMP production while nanomolar range was observed for ß-arrestin 2 recruitment as well as receptor internalization. Interestingly, the predicted receptor occupancy indicates that the maximal G protein activation and cAMP response occur at <10% of receptor occupancy whereas >90% of activated receptors is required to achieve full ß-arrestin 2 recruitment and subsequent receptor internalization. The rapid receptor internalization was also followed by a recycling phase. Collectively, our data reveal that ß-arrestin-mediated desensitization, internalization, and the subsequent fast recycling of receptors at the plasma membrane may provide a mechanistic ground to the "spare receptor" paradigm. More generally, the novel tools described here will undoubtedly provide the scientific community investigating gonadotropin receptors with powerful means to decipher their pharmacology and signaling with the prospect of pathophysiological and drug discovery applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA