Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Mater Chem B ; 11(3): 565-575, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36354057

RESUMEN

To date, cancer therapies largely consist of five pillars: surgery, radiation, chemotherapy, targeted therapy, and immunotherapy. Still, researchers are trying to innovate the current cancer therapies to pursue an ideal one without side effects. For developing such a therapy, we designed a chemically well-defined route to a PEG- and docetaxel (DTX)-conjugated inorganic polymer, polyphosphazene, named "polytaxel (PTX)" with a prolonged blood circulation time and tumor localization. Here, we conducted the proof-of-concept study of the ideal therapy in orthotopic and xenograft pancreatic cancer models. We found that the average tumor inhibition rates of PTX were similar to those of DTX without any DTX toxicity-related side effects, such as neutropenia and weight loss. In conclusion, PTX met the requirements of an ideal anticancer drug with high anticancer efficacy and 100% survival rate. PTX is expected to replace any existing anticancer therapies in clinical practice.


Asunto(s)
Neutropenia , Neoplasias Pancreáticas , Humanos , Docetaxel/farmacología , Docetaxel/uso terapéutico , Nivel sin Efectos Adversos Observados , Taxoides/efectos adversos , Polímeros/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neutropenia/inducido químicamente , Neutropenia/tratamiento farmacológico
2.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36555633

RESUMEN

Recently, synthetic polymers have attracted great interest in the field of biomedical science. Among these, polyphosphazenes (PPZs) are regarded as one of the most promising materials, due to their structural flexibility and biodegradability compared to other materials. PPZs have been developed through numerous studies. In particular, multi-functionalized PPZs have been proven to be potential biomaterials in various forms, such as nanoparticles (NPs) and hydrogels, through the introduction of various functional groups. Thus, PPZs have been applied for the delivery of therapeutic molecules (low molecular weight drugs, genes and proteins), bioimaging, phototherapy, bone regeneration, dental liners, modifiers and medical devices. The main goal of the present review is to highlight the recent and the most notable existing PPZ-based biomaterials for aforementioned applications, with future perspectives in mind.


Asunto(s)
Materiales Biocompatibles , Sistemas de Liberación de Medicamentos , Materiales Biocompatibles/uso terapéutico , Materiales Biocompatibles/química , Sistemas de Liberación de Medicamentos/métodos , Polímeros/uso terapéutico , Polímeros/química , Compuestos Organofosforados/uso terapéutico , Compuestos Organofosforados/química
3.
Polymers (Basel) ; 14(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36432965

RESUMEN

Polymeric micelles, nanosized assemblies of amphiphilic polymers with a core-shell architecture, have been used as carriers for various therapeutic compounds. They have gained attention due to specific properties such as their capacity to solubilize poorly water-soluble drugs, biocompatibility, and the ability to accumulate in tumor via enhanced permeability and retention (EPR). Moreover, additional functionality can be provided to the micelles by a further modification. For example, micelle surface modification with targeting ligands allows a specific targeting and enhanced tumor accumulation. The introduction of stimuli-sensitive groups leads to the drug's release in response to environment change. This review highlights the progress in the development of multifunctional polymeric micelles in the field of cancer therapy. This review will also cover some examples of multifunctional polymeric micelles that are applied for tumor imaging and theragnosis.

4.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36233164

RESUMEN

Clay-based bio-inorganic nanohybrids, such as layered double hydroxides (LDH), have been extensively researched in the various fields of biomedicine, particularly for drug delivery and bio-imaging applications. Recent trends indicate that such two-dimensional LDH can be hybridized with a variety of photo-active biomolecules to selectively achieve anti-cancer benefits through numerous photo/chemotherapies (PCT), including photothermal therapy, photodynamic therapy, and magnetic hyperthermia, a combination of therapies to achieve the best treatment regimen for patients that cannot be treated either by surgery or radiation alone. Among the novel two-dimensional clay-based bio-inorganic nanohybrids, LDH could enhance the photo-stability and drug release controllability of the PCT agents, which would, in turn, improve the overall phototherapeutic performance. This review article highlights the most recent advances in LDH-based two-dimensional clay-bio-inorganic nanohybrids for the aforementioned applications.


Asunto(s)
Hidróxidos , Fotoquimioterapia , Arcilla , Sistemas de Liberación de Medicamentos , Humanos
5.
Polymers (Basel) ; 14(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36236057

RESUMEN

Nanocomposites of hydrophobic organo-clay/polypropylene (organo-clay/PP) were efficiently developed through a solution-blending technique. For this, we utilized various smectite clays as host agents; namely, Na-montmorillonite (Mt, ~1000 nm), Na-fluorine mica (Mica, ~1500 nm), and Na-hectorite (Ht, ~60 nm) with varied sizes, layer charges, and aspect ratios. Such clays were functionalized with cetyltrimethylammonium (CTA) bromide via an intercalation technique to obtain hydrophobic organic clays. The as-made clay particles were further mixed with a PP/xylene solution; the latter was removed to obtain the final product of the CTA-clay/PP nanocomposite. An X-ray diffraction (XRD) analysis confirmed that there were no characteristic (001) diffraction peaks for CTA-Mica in the PP nanocomposites containing CTA-Mica, assuring the fact that the Mica layers could be completely exfoliated and thereby homogenously composited within the PP. On the other hand, the CTA-Mt and CTA-Ht incorporated composites had broader (001) peaks, which might have been due to the partial exfoliation of CTA-Mt and CTA-Ht in the composites. Among the three CTA-clay/PP nanocomposites, the CTA-Mica nanohybrid showed an enhanced thermal stability by ~42 °C compared to the intact host polymer matrix. We also noted that when the CTA-Mica content was ~9 mass % in the nanocomposites, the Young's modulus was drastically maximized to 69%. Our preliminary results therefore validated that out of the three tested clay-PP nanocomposites, the CTA-Mica nanofiller served as the best one to improve both the thermal and mechanical properties of the PP nanocomposites.

6.
Chem Sci ; 12(14): 5044-5063, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-34168768

RESUMEN

Advanced nanotechnology has been emerging rapidly in terms of novel hybrid nanomaterials that have found various applications in day-to-day life for the betterment of the public. Specifically, gold, iron, silica, hydroxy apatite, and layered double hydroxide based nanohybrids have shown tremendous progress in biomedical applications, including bio-imaging, therapeutic delivery and photothermal/dynamic therapy. Moreover, recent progress in up-conversion nanohybrid materials is also notable because they have excellent NIR imaging capability along with therapeutic benefits which would be useful for treating deep-rooted tumor tissues. Our present review highlights recent developments in inorganic-inorganic nanohybrids, and their applications in bio-imaging, drug delivery, and photo-therapy. In addition, their future scope is also discussed in detail.

7.
Polymers (Basel) ; 13(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806912

RESUMEN

Semiconducting polymer nanoparticles (SPN) have been emerging as novel functional nano materials for phototherapy which includes PTT (photo-thermal therapy), PDT (photodynamic therapy), and their combination. Therefore, it is important to look into their recent developments and further explorations specifically in cancer treatment. Therefore, the present review describes novel semiconducting polymers at the nanoscale, along with their applications and limitations with a specific emphasis on future perspectives. Special focus is given on emerging and trending semiconducting polymeric nanoparticles in this review based on the research findings that have been published mostly within the last five years.

8.
ACS Biomater Sci Eng ; 6(1): 494-504, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463200

RESUMEN

Branched polymers as drug delivery carriers have been widely attempted due to their outstanding drug loading capability and complex stability like branched polyethyleneimine (B-PEI). However, branched polymers without biodegradability may cause toxicity as they can accumulate in the body. Herein, we report branched modified nona-arginine (B-mR9) composed of redox-cleavable disulfide bonds to form stable complexes with methotrexate (MTX) as an anticancer agent, which is further coated with hyaluronic acid (HA). The HA-coated nanoparticles provide targetability for the CD44 cell surface receptor. The B-mR9-MTX/HA can effectively aid in intracellular MTX delivery to CD44 overexpressing cancer cells being degradable by the reducing environments of the cancer cells. The B-mR9-MTX/HA exhibits not only a glutathione-triggered degradability but also an outstanding CD44-mediated MTX delivery efficacy. In addition, its superior tumor inhibition capability was confirmed through an in vivo study. The results suggest that the HA-coated B-mR9 nanoparticle can be used as a drug delivery platform.


Asunto(s)
Péptidos de Penetración Celular , Nanopartículas , Sistemas de Liberación de Medicamentos , Ácido Hialurónico , Metotrexato
9.
ACS Biomater Sci Eng ; 6(1): 474-484, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463245

RESUMEN

The strategy of co-loading therapeutic agents in a single nanocarrier is the most common method in theranostic cancer research. However, it is still challenging to encapsulate theranostic agents that have different physicochemical properties in a single nanocarrier system because of the immiscibility between the hydrophobic fluorescent molecule and the hydrophilic drug molecule. Thus, we report a novel concept of a theranostic nanoparticle (NP) consisting of an amphiphilic near-infrared (NIR) dye as a hydrophilic drug delivery carrier with enhanced NIR imaging capability. Unlike conventional nanocarrier systems, the newly designed amphiphilic NIR dyes (Cy-C dyes) function as both the drug delivery carrier and the fluorescent imaging agent. It can be utilized for therapy and diagnosis simultaneously by simply encapsulating the hydrophilic drug. This method is innovative not only due to formation of the theranostic nanoparticle for immiscible hydrophilic drug delivery but also because of generation of strong fluorescence signals due to the Cy-C dyes on the surfaces of the NPs. In this study, Cy-C (C = C3, C6, and C9) dyes were designed by conjugating the heptamethine cyanine dye with poly(ethylene glycol) (PEG5K) and polyethyleneimine 2000 (PEI2K). The result was self-assembled structures that effectively encapsulated a hydrophilic drug molecule (MTX) without self-quenching and scattered light interference. Among the Cy-C NPs encapsulating MTX (Cy-C/MTX NPs), Cy-C6/MTX and Cy-C9/MTX formed a concentric supramolecular bilayer (like liposomes in aqueous solution) and were capable of translocating hydrophilic drug molecules to their aqueous interior spaces. The supramolecular bilayer structure of Cy-C9/MTX provides better particle stability and drug delivery efficacy than does the supramolecular monolayer structure of Cy-C3/MTX. In addition, Cy-C9/MTX demonstrated excellent blood circulation and long-term tumor retention qualities in living mice. The effective tumor suppression ability of Cy-C9/MTX validated the concept that the amphiphilic Cy-C9 dye is the best nanoplatform for theranostics based on hydrophilic drug delivery.


Asunto(s)
Nanopartículas , Medicina de Precisión , Animales , Portadores de Fármacos , Colorantes Fluorescentes , Interacciones Hidrofóbicas e Hidrofílicas , Ratones
13.
J Control Release ; 298: 83-98, 2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30707902

RESUMEN

Vitamins are a diverse group of "life nourishing" molecules that are essential for proper childhood development, and for maintaining health throughout adulthood into old age. Vitamin supplementation is an important strategy for reducing the severe and chronic effects of malnutrition in subsets of the population of the developing world. Additionally, the precise role of many vitamins in certain conditions, including cancer and cardiovascular disease, remains an area of active research, although guidelines for vitamin supplementation in otherwise adequately nourished populations remain controversial. This review describes vitamin delivery methods and techniques, focusing on the most recent advances and novel approaches. Specific attention has been given to physical methods and novel formulations for delivery with an emphasis on reporting pros and cons of each technique and highlighting future directions. Of particular interest is the potential for transdermal delivery of certain vitamins, which is an approach that may provide advantages in some populations (e.g. for vitamin D), but that still requires considerable additional research and clinical validation.


Asunto(s)
Suplementos Dietéticos , Sistemas de Liberación de Medicamentos/tendencias , Vitaminas/administración & dosificación , Animales , Humanos , Desnutrición/epidemiología , Desnutrición/prevención & control
14.
Sci Rep ; 8(1): 13488, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30177777

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

15.
ACS Appl Mater Interfaces ; 10(34): 28458-28470, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30064206

RESUMEN

Curcumin (CRC) has been widely used as a therapeutic agent for various drug delivery applications. In this work, we focused on the applicability of CRC as a nanodrug delivery agent for doxorubicin hydrochloride (DOX) (commercially known as Adriamycin) coated with poly(ethylene glycol) (PEG) as an effective therapeutic strategy against multidrug-resistant cancer cells. The developed PEG-coated CRC/DOX nanoparticles (NPs) (PEG-CRC/DOX NPs) were well localized within the resistant cancer cells inducing apoptosis confirmed by flow cytometry and DNA fragmentation assays. The PEG-CRC/DOX NPs suppressed the major efflux proteins in DOX-resistant cancer cells. The in vivo biodistribution studies on HCT-8/DOX-resistant tumor xenograft showed improved bioavailability of the PEG-CRC/DOX NPs, and thereby suppressed tumor growth significantly compared to the other samples. This study clearly shows that curcumin nanoparticles could deliver DOX efficiently into the multidrug-resistant cancer cells to have potential therapeutic benefits.


Asunto(s)
Nanoestructuras , Línea Celular Tumoral , Curcumina , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Nanopartículas , Polietilenglicoles , Distribución Tisular
16.
Sci Rep ; 8(1): 1899, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382898

RESUMEN

This work aimed at formulating paclitaxel (PTX) loaded cell penetrating peptide (CPP) coated Mn doped ZnS nanoparticles (Mn:ZnS NPs) for improved anti-cancer efficacy in vitro and in vivo. The developed PTX loaded Mn:ZnS NPs with different CPPs (PEN, pVEC and R9) showed enhanced anti-cancer effect compared to bare PTX, which has been validated by MTT assay followed by apoptosis assay and DNA fragmentation analysis. The in vivo bio-distribution and anti-cancer efficacy was studied on breast cancer xenograft model showing maximum tumor localization and enhanced therapeutic efficacy with R9 coated Mn:ZnS NPs (R9:Mn:ZnS NPs) and was confirmed by H/E staining. Thus, R9:Mn:ZnS NPs could be an ideal theranostic nano-carrier for PTX with enhanced  the rapeutic efficacy toward cancer cells, where penetration and sustainability of therapeutics are essential.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Manganeso/química , Nanopartículas/química , Paclitaxel/química , Paclitaxel/farmacología , Sulfuros/química , Compuestos de Zinc/química , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Femenino , Células HeLa , Humanos , Polietilenglicoles/química , Polímeros/química
17.
Polymers (Basel) ; 10(8)2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30960755

RESUMEN

Stimuli-responsive polypeptides have gained attention because desirable bioactive properties can be easily imparted to them while keeping their biocompatibility and biodegradability intact. In this review, we summarize the most recent advances in various stimuli-responsive polypeptides (pH, reduction, oxidation, glucose, adenosine triphosphate (ATP), and enzyme) over the past five years. Various synthetic strategies exploited for advanced polypeptide-based materials are introduced, and their applicability in biomedical fields is discussed. The recent polypeptides imparted with new stimuli-responsiveness and their novel chemical and physical properties are explained in this review.

18.
Colloids Surf B Biointerfaces ; 159: 54-61, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28780461

RESUMEN

DNA vaccination with microneedles (MNs) into the skin represents a potential therapeutic approach for the clinical treatment of viral diseases as well as for intradermal genetic immunization. In this study, we investigated a DNA vaccination against the severe fever with thrombocytopenia syndrome virus (SFTSV) delivered by nano-patterned microneedles (nMNs) to improve the efficiency compared to a conventional MN vaccination. Because DNA vaccinations delivered by coated MNs have major disadvantages such as a poor coating efficiency and immunogenicity, additional excipients are necessary. Therefore, we developed nMNs to improve the affinity of stainless steel for plasmid DNA vaccinations. The results show that the nMNs have an improved DNA vaccine loading capacity because their surfaces have an increased hydrophilicity from the high surface/volume ratio. The cytocompatibility analysis also showed a higher cell proliferation when using the nMNs. Finally, the in vivo experiments with balb/c mice vaccinated with the SFTSV DNA vaccine-coated nMNs generated a higher level of cellular immune responses than that of the unmodified MNs.


Asunto(s)
Vacunas de ADN/inmunología , Animales , Proliferación Celular/fisiología , Ratones , Ratones Endogámicos BALB C , Acero Inoxidable
19.
Acta Biomater ; 57: 187-196, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28528116

RESUMEN

Helical peptides were naturally-occurring ordered conformations that mediated various biological functions essential for biotechnology. However, it was difficult for natural helical polypeptides to be applied in biomedical fields due to low bioavailability. To avoid these problems, synthetic alpha-helical polypeptides have recently been introduced by further modifying pendants in the side chain. In spite of an attractive biomimetic helical motif, these systems could not be tailored for targeted delivery mainly due to nonspecific binding events. To address these issues, we created a conformation-transformable polypeptide capable of eliciting a pH-activated cell-penetrating property solely at the cancer region. The developed novel polypeptide showed that the bare helical conformation had a function at physiological conditions while the pH-induced helical motif provided an active cell-penetrating characteristic at a tumor extracellular matrix pH. The unusual conformation-transformable system can elicit bioactive properties exclusively at mild acidic pH. STATEMENT OF SIGNIFICANCE: We developed pH-controllable cell-penetrating polypeptides (PCCPs) undergoing pH-induced conformational transitions. Unlike natural cell-penetrating peptides, PCCPs was capable of penetrating the plasma membranes dominantly at tumor pH, driven by pH-controlled helicity. The conformation of PCCPs at neutral pH showed low helical propensity because of dominant electrostatic attractions within the side chains. However, the helicity of PCCPs was considerably augmented by the balance of electrostatic interactions, thereby inducing selective cellular penetration. Three polypeptides undergoing different conformational transitions were prepared to verify the selective cellular uptake influenced by their structures. The PCCP undergoing low-to-high helical conformation provided the tumor specificity and enhanced uptake efficiency. pH-induced conformation-transformable polypeptide might provide a novel platform for stimuli-triggered targeting systems.


Asunto(s)
Antineoplásicos , Péptidos de Penetración Celular , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/metabolismo , Neoplasias/patología
20.
J Control Release ; 246: 142-154, 2017 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-27170226

RESUMEN

Cell-penetrating peptides (CPPs) have been widely used to deliver nucleic acid molecules. Generally, CPPs consisting of short amino acid sequences have a linear structure, resulting in a weak complexation and low transfection efficacy. To overcome these drawbacks, a novel type of CPP is required to enhance the delivery efficacy while maintaining its safe use at the same time. Herein, we report that a bioreducible branched poly-CPP structure capable of responding to reducing conditions attained both outstanding delivery effectiveness and selective gene release in carcinoma cells. Branched structures provide unusually strong electrostatic attraction between DNA and siRNA molecules, thereby improving the transfection capability through a tightly condensed form. We designed a modified type of nona-arginine (mR9) and synthesized a branched-mR9 (B-mR9) using disulfide bonds. A novel B-mR9/pDNA polyplex exhibited redox-cleavability and high transfection efficacy compared to conventional CPPs, with higher cell viability as well. B-mR9/VEGF siRNA polyplex exhibited significant serum stability and high gene-silencing effects in vitro. Furthermore, the B-mR9 polyplex showed outstanding tumor accumulation and inhibition ability in vivo. The results suggest that the bioreducible branched poly CPP has great potential as a gene delivery platform.


Asunto(s)
Arginina/análogos & derivados , Péptidos de Penetración Celular/química , ADN/administración & dosificación , Técnicas de Transferencia de Gen , Plásmidos/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Animales , Supervivencia Celular , ADN/genética , Femenino , Células HEK293 , Células HeLa , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Plásmidos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Transfección , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA