Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Nat Cell Biol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961283

RESUMEN

Despite the demonstrated importance of DNA G-quadruplexes (G4s) in health and disease, technologies to readily manipulate specific G4 folding for functional analysis and therapeutic purposes are lacking. Here we employ G4-stabilizing protein/ligand in conjunction with CRISPR to selectively facilitate single or multiple targeted G4 folding within specific genomic loci. We demonstrate that fusion of nucleolin with a catalytically inactive Cas9 can specifically stabilize G4s in the promoter of oncogene MYC and muscle-associated gene Itga7 as well as telomere G4s, leading to cell proliferation arrest, inhibition of myoblast differentiation and cell senescence, respectively. Furthermore, CRISPR can confer intra-G4 selectivity to G4-binding compounds pyridodicarboxamide and pyridostatin. Compared with traditional G4 ligands, CRISPR-guided biotin-conjugated pyridodicarboxamide enables a more precise investigation into the biological functionality of de novo G4s. Our study provides insights that will enhance understanding of G4 functions and therapeutic interventions.

2.
Nano Lett ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865330

RESUMEN

Bioorthogonal chemistry represents a powerful tool in chemical biology, which shows great potential in epigenetic modulation. As a proof of concept, the epigenetic modulation model of mitochondrial DNA (mtDNA) is selected because mtDNA establishes a relative hypermethylation stage under oxidative stress, which impairs the mitochondrion-based therapeutic effect during cancer therapy. Herein, we design a new biocompatible hydrogen-bonded organic framework (HOF) for a HOF-based mitochondrion-targeting bioorthogonal platform TPP@P@PHOF-2. PHOF-2 can activate a prodrug (pro-procainamide) in situ, which can specifically inhibit DNA methyltransferase 1 (DNMT1) activity and remodel the epigenetic modification of mtDNA, making it more susceptible to ROS damage. In addition, PHOF-2 can also catalyze artemisinin to produce large amounts of ROS, effectively damaging mtDNA and achieving better chemodynamic therapy demonstrated by both in vitro and in vivo studies. This work provides new insights into developing advanced bioorthogonal therapy and expands the applications of HOF and bioorthogonal catalysis.

3.
Colloids Surf B Biointerfaces ; 240: 113990, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810468

RESUMEN

Chemodynamic therapy (CDT), which employs intracellular H2O2 to produce toxic hydroxyl radicals to kill cancer cells, has received great attention due to its specificity to tumors. However, the relatively insufficient endogenous H2O2 and the short-lifetime and limited diffusion distance of •OH compromise the therapeutic efficacy of CDT. Mitochondria, which play crucial roles in oncogenesis, are highly vulnerable to elevated oxidative stress. Herein, we constructed a mitochondria-mediated self-cycling system to achieve high dose of •OH production through continuous H2O2 supply. Cinnamaldehyde (CA), which can elevate H2O2 level in the mitochondria, was loaded in Cu(II)-containing metal organic framework (MOF), termed as HKUST-1. After actively targeting mitochondria, the intrinsic H2O2 in mitochondria of cancer cells could induce degradation of MOF, releasing the initial free CA. The released CA further triggered the upregulation of endogenous H2O2, resulting in the subsequent adequate release of CA and the final burst growth of H2O2. The cycle process greatly promoted the Fenton-like reaction between Cu2+ and H2O2 and induced long-term high oxidative stress, achieving enhanced chemodynamic therapy. In a word, we put forward an efficient strategy for enhanced chemodynamic therapy.


Asunto(s)
Acroleína , Peróxido de Hidrógeno , Estructuras Metalorgánicas , Mitocondrias , Estrés Oxidativo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Acroleína/farmacología , Acroleína/química , Acroleína/análogos & derivados , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Cobre/química , Cobre/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Ratones , Radical Hidroxilo/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Tamaño de la Partícula , Línea Celular Tumoral , Propiedades de Superficie
4.
ACS Appl Mater Interfaces ; 16(19): 24295-24307, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697643

RESUMEN

Pyroptosis has garnered increasing attention because of its ability to trigger robust antitumor immunity. Pyroptosis is initiated by the activation of inflammasomes, which are regulated by various organelles. The collaboration among organelles offers several protective mechanisms to prevent activation of the inflammasome, thereby limiting the induction of efficient pyroptosis. Herein, a multiorganelle homeostasis disruptor (denoted BLL) is constructed by encapsulating liposomes and bortezomib (BTZ) within a layered double hydroxide (LDH) nanocage to continuously activate inflammasomes for inducing efficient pyroptosis. In lysosomes, the negatively charged liposomes are released to recruit the NLRP3 inflammasomes through electrostatic interactions. ER stress is induced by BTZ to enhance the activation of the NLRP3 inflammasome. Meanwhile, the BLL nanocage exhibited H+-scavenging ability due to the weak alkalinity of LDH, thus disrupting the homeostasis of the lysosome and alleviating the degradation of the NLRP3 inflammasome by lysosomal-associated autophagy. Our results suggest that the BLL nanocage induces homeostatic imbalance in various organelles and efficient pyroptosis. We hope this work can provide new insights into the design of an efficient pyroptosis inducer by disrupting the homeostatic balance of multiple organelles and promote the development of novel antineoplastic platforms.


Asunto(s)
Homeostasis , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Piroptosis/efectos de los fármacos , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Homeostasis/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Humanos , Ratones , Bortezomib/farmacología , Bortezomib/química , Liposomas/química , Animales , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Hidróxidos/química , Hidróxidos/farmacología , Nanoestructuras/química , Nanopartículas/química
5.
J Am Chem Soc ; 146(12): 8216-8227, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38486429

RESUMEN

Bioorthogonal reactions provide a powerful tool to manipulate biological processes in their native environment. However, the transition-metal catalysts (TMCs) for bioorthogonal catalysis are limited to low atomic utilization and moderate catalytic efficiency, resulting in unsatisfactory performance in a complex physiological environment. Herein, sulfur-doped Fe single-atom catalysts with atomically dispersed and uniform active sites are fabricated to serve as potent bioorthogonal catalysts (denoted as Fe-SA), which provide a powerful tool for in situ manipulation of cellular biological processes. As a proof of concept, the N6-methyladensoine (m6A) methylation in macrophages is selectively regulated by the mannose-modified Fe-SA nanocatalysts (denoted as Fe-SA@Man NCs) for potent cancer immunotherapy. Particularly, the agonist prodrug of m6A writer METTL3/14 complex protein (pro-MPCH) can be activated in situ by tumor-associated macrophage (TAM)-targeting Fe-SA@Man, which can upregulate METTL3/14 complex protein expression and then reprogram TAMs for tumor killing by hypermethylation of m6A modification. Additionally, we find the NCs exhibit an oxidase (OXD)-like activity that further boosts the upregulation of m6A methylation and the polarization of macrophages via producing reactive oxygen species (ROS). Ultimately, the reprogrammed M1 macrophages can elicit immune responses and inhibit tumor proliferation. Our study not only sheds light on the design of single-atom catalysts for potent bioorthogonal catalysis but also provides new insights into the spatiotemporal modulation of m6A RNA methylation for the treatment of various diseases.


Asunto(s)
Adenosina/análogos & derivados , Inmunoterapia , Neoplasias , Humanos , Metilación de ARN , Catálisis , Metiltransferasas
6.
Biomaterials ; 307: 122523, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432004

RESUMEN

Anticancer nanomedicines used for ferroptosis therapy generally rely on the direct delivery of Fenton catalysts to drive lipid peroxidation in cancer cells. However, the therapeutic efficacy is limited by the ferroptosis resistance caused by the intracellular anti-ferroptotic signals. Herein, we report the intrinsic ATPase-mimicking activity of a vanadium carbide MXene nanozyme (PVCMs) to pharmacologically modulate the nuclear factor erythroid 2-related factor 2 (Nrf2) program, which is the master anti-ferroptotic mediator in the ironclad defense system in triple-negative breast cancer (TNBC) cells. The PVCMs perform high ATPase-like activity that can effectively and selectively catalyze the dephosphorylation of ATP to generate ADP. Through a cascade mechanism initiated by falling energy status, PVCMs can powerfully hinder the Nrf2 program to selectively drive ferroptosis in TNBC cells in response to PVCMs-induced glutathione depletion. This study provides a paradigm for the use of pharmacologically active nanozymes to moderate specific cellular signals and elicit desirable pharmacological activities for therapeutic applications.


Asunto(s)
Ferroptosis , Nitritos , Elementos de Transición , Neoplasias de la Mama Triple Negativas , Humanos , Adenosina Trifosfatasas , Factor 2 Relacionado con NF-E2 , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
7.
Nano Lett ; 24(4): 1341-1350, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38252869

RESUMEN

In situ drug synthesis using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has attracted considerable attention in tumor therapy because of its satisfactory effectiveness and reduced side-effects. However, the exogenous addition of copper catalysts can cause cytotoxicity and has hampered biomedical applications in vivo. Here, we design and synthesize a metal-organic framework (MOF) to mimic copper chaperone, which can selectively modulate copper trafficking for bioorthogonal synthesis with no need of exogenous addition of copper catalysts. Like copper chaperones, the prepared ZIF-8 copper chaperone mimics specifically bind copper ions through the formation of coordination bonds. Moreover, the copper is unloaded under the acidic environment due to the dissipation of the coordination interactions between metal ions and ligands. In this way, the cancer cell-targeted copper chaperone mimics can selectively transport copper ions into cells. Regulation of intracellular copper trafficking may inspire constructing bioorthogonal catalysis system with reduced metal cytotoxicity in live cells.


Asunto(s)
Alquinos , Cobre , Cobre/farmacología , Cobre/química , Alquinos/química , Azidas/química , Reacción de Cicloadición , Catálisis , Iones
8.
Adv Mater ; 36(14): e2310063, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38153294

RESUMEN

Pyroptosis has garnered increasing attention in cancer immunotherapy. Moreover, increasing plasma membrane damage by reactive oxygen species (ROS) is considered an effective strategy for promoting pyroptosis. However, the current tactics for enhancing membrane rupture in pyroptosis are limited by the inherent drawbacks of ROS and the immunosuppressive tumor microenvironment. Herein, a self-adaptive pyroptosis inducer (LPZ) is designed by integrating Lactobacillus rhamnosus GG (LGG) and an enzyme-like metal-organic framework to achieve potent pyroptosis immunotherapy. LPZ can adhere to cancer cell membranes through the interaction between the pili of LGG and the mucin of cancer cells. In particular, the adaptive formula can gradually enhance the ability of nanozymes to produce ROS by creating an acidic microenvironment through anaerobic respiration. These results verify that LPZ could generate high levels of ROS both on the membrane and within cancer cells, leading to pyroptotic cell death and strong antitumor immunity. Meanwhile, LGG are eventually killed by ROS in this process to halt their respiration and prevent potential biosafety concerns. Overall, this work provides new inspiration for the design of self-adaptive nanocatalytic drugs for cancer immunotherapy.


Asunto(s)
Neoplasias , Piroptosis , Humanos , Especies Reactivas de Oxígeno , Membrana Celular , Catálisis , Inmunoterapia , Microambiente Tumoral , Neoplasias/terapia
9.
J Am Chem Soc ; 145(48): 26296-26307, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37987621

RESUMEN

Immunotherapy of triple-negative breast cancer (TNBC) has an unsatisfactory therapeutic outcome due to an immunologically "cold" microenvironment. Fusobacterium nucleatum (F. nucleatum) was found to be colonized in triple-negative breast tumors and was responsible for the immunosuppressive tumor microenvironment and tumor metastasis. Herein, we constructed a bacteria-derived outer membrane vesicle (OMV)-coated nanoplatform that precisely targeted tumor tissues for dual killing of F. nucleatum and cancer cells, thus transforming intratumor bacteria into immunopotentiators in immunotherapy of TNBC. The as-prepared nanoparticles efficiently induced immunogenic cell death through a Fenton-like reaction, resulting in enhanced immunogenicity. Meanwhile, intratumoral F. nucleatum was killed by metronidazole, resulting in the release of pathogen-associated molecular patterns (PAMPs). PAMPs cooperated with OMVs further facilitated the maturation of dendritic cells and subsequent T-cell infiltration. As a result, the "kill two birds with one stone" strategy warmed up the cold tumor environment, maximized the antitumor immune response, and achieved efficient therapy of TNBC as well as metastasis prevention. Overall, this strategy based on a microecology distinction in tumor and normal tissue as well as microbiome-induced reversal of cold tumors provides new insight into the precise and efficient immune therapy of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Adyuvantes Inmunológicos , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/uso terapéutico , Inmunoterapia/métodos , Fusobacterium nucleatum/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
10.
Chem Sci ; 14(40): 11192-11202, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37860639

RESUMEN

The ability to regulate mitophagy in a living system with small molecules remains a great challenge. We hypothesize that adding fragments specific to the key autophagosome protein LC3 to mitochondria will mimic receptor-mediated mitophagy, thus engaging the autophagy-lysosome pathway to induce mitochondrial degradation. Herein, we develop a general biochemical approach to modulate mitophagy, dubbed mito-ATTECs, which employ chimera molecules composed of LC3-binding moieties linked to mitochondria-targeting ligands. Mito-ATTECs trigger mitophagy via targeting mitochondria to autophagosomes through direct interaction between mito-ATTECs and LC3 on mitochondrial membranes. Subsequently, autophagosomes containing mitochondria rapidly fuse with lysosomes to facilitate the degradation of mitochondria. Therefore, mito-ATTECs circumvent the detrimental effects related to disruption of mitochondrial membrane integrity by inducers routinely used to manipulate mitophagy, and provide a versatile biochemical approach to investigate the physiological roles of mitophagy. Furthermore, we found that sustained mitophagy lead to mitochondrial depletion and autophagic cell death in several malignant cell lines (lethal mitophagy). Among them, apoptosis-resistant malignant melanoma cell lines are particularly sensitive to lethal mitophagy. The therapeutic efficacy of mito-ATTECs has been further evaluated by using subcutaneous and pulmonary metastatic melanoma models. Together, the mitochondrial depletion achieved by mito-ATTECs may demonstrate the general concept of inducing cancer cell lethality through excessive mitochondrial clearance, establishing a promising therapeutic paradigm for apoptosis-resistant tumors.

11.
Nat Commun ; 14(1): 4647, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532731

RESUMEN

Lack of sufficient cytotoxic T lymphocytes (CD8+ T cells) infiltration and dysfunctional state of CD8+ T cells are considered enormous obstacles to antitumor immunity. Herein, we construct a synergistic nanoplatform to promote CD8+ T cell infiltration in tumors while restoring T cell function by regulating methionine metabolism and activating the STING innate immune pathway. The CRISPR/Cas9 system down-regulates the methionine transporter SLC43A2 and restricts the methionine uptake by tumor cells, thereby relieving the methionine competition pressure of T cells; simultaneously, the released nutrition metal ions activate the cGAS/STING pathway. In this work, the described nanoplatform can enhance the effect of immunotherapy in preclinical cancer models in female mice, enhancing STING pathway mediated immunity and facilitating the development of amino acid metabolic intervention-based cancer therapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Femenino , Ratones , Animales , Sistemas CRISPR-Cas , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Inmunoterapia , Metionina/metabolismo , Inmunidad
12.
Nano Lett ; 23(14): 6424-6432, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37395701

RESUMEN

Artificial metalloenzymes (ArMs) are gaining much attention in life sciences. However, the function of the present ArMs for disease treatment is still in its infancy, which may impede the possible therapeutic potential. Herein, we construct an antibody engineered ArM by using the Fc region of IgG and bioorthogonal chemistry, which endows the ArM with the capability of manipulating cell-cell communication and bioorthogonal catalysis for tumor immuno- and chemotherapy. Specially, Fc-Pd ArM is modified on the cancer cell surface by metabolic glycoengineering to catalyze the bioorthogonal activation of prodrug for tumor chemotherapy. More importantly, the antibody-based ArM can mediate cell-cell communication between cancer cells and NK cells, activating the ADCC effect for immunotherapy. In vivo antitumor applications suggest that the ArM can not only eliminate primary tumor but also inhibit tumor lung metastasis. Our work provides a new attempt to develop artificial metalloenzymes with cell-cell communication the ability for bioorthogonal catalysis and combination therapy.


Asunto(s)
Metaloproteínas , Neoplasias , Humanos , Células Asesinas Naturales , Neoplasias/patología , Anticuerpos , Espacio Extracelular , Metaloproteínas/metabolismo , Línea Celular Tumoral
13.
J Am Chem Soc ; 145(30): 16658-16668, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37486170

RESUMEN

Pyroptosis is an inflammatory form of programmed cell death that holds great promise in cancer therapy. However, autophagy as the crucial pyroptosis checkpoint and the self-protective mechanism of cancer cells significantly weakens the therapeutic efficiency. Here, a bioorthogonal pyroptosis nanoregulator is constructed to induce pyroptosis and disrupt the checkpoint, enabling high-efficiency pyroptosis cancer therapy. The nanoregulator allows the in situ synthesis and accumulation of the photosensitizer PpIX in the mitochondria of cancer cells to directly produce mitochondrial ROS, thus triggering pyroptosis. Meanwhile, the in situ generated autophagy inhibitor via palladium-catalyzed bioorthogonal chemistry can disrupt the pyroptosis checkpoint to boost the pyroptosis efficacy. With the biomimetic cancer cell membrane coating, this platform for modulating pyroptosis presents specificity to cancer cells and poses no harm to normal tissue, resulting in a highly efficient and safe antitumor treatment. To our knowledge, this is the first report on a disrupting intrinsic protective mechanism of cancer cells for tumor pyroptosis therapy. This work highlights that autophagy as a checkpoint plays a key regulative role in pyroptosis therapy, which would motivate the future design of therapeutic regimens.


Asunto(s)
Neoplasias , Piroptosis , Apoptosis , Autofagia , Biomimética , Membrana Celular
14.
Angew Chem Int Ed Engl ; 62(32): e202306395, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37268594

RESUMEN

Transition metal catalysts (TMCs) mediated bioorthogonal uncaging catalysis has sparked increasing interest in prodrug activation. However, due to their "always-on" catalytic activity as well as the complex and catalytic-detrimental intracellular environment, the biosafety and therapeutic efficiency of TMCs are unsatisfactory. Herein, a DNA-gated and self-protected bioorthogonal catalyst has been designed by modifying nanozyme-Pd0 with highly programmable nucleic acid (DNA) molecules to achieve efficient intracellular drug synthesis for cancer therapy. Monolayer DNA molecules could endow the catalyst with targeting and perform as a gatekeeper to achieve selective prodrug activation within cancer cells. Meanwhile, the prepared graphitic nitrogen-doped carbon nanozyme with glutathione peroxidase (GPx) and catalase (CAT)-like activities could improve the catalytic-detrimental intracellular environment to prevent the catalyst from being inactivated and sensitize the subsequent chemotherapy. Overall, we believe that our work will promote the development of secure and efficient bioorthogonal catalytic systems and provide new insights into novel antineoplastic platforms.


Asunto(s)
Antineoplásicos , Neoplasias , Profármacos , Elementos de Transición , Humanos , Catálisis , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
15.
Angew Chem Int Ed Engl ; 62(34): e202307076, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37309708

RESUMEN

It is known that extracellular free radical reactive oxygen species (ROS) rather than intracellular ROS plays a non-substitutable role in regulation of tumor-suppressing (M1) tumor-associated macrophages (TAMs) polarization. However, most therapeutic nanoplatforms mainly provide intracellular ROS and exhibit insufficient accumulation near TAMs, which strongly limits the macrophage-based immunotherapeutic effects. Here we design and synthesize chiral MoS2 /CoS2 nanozymes with peroxidase (POD)-like and catalase (CAT)-like activities to efficiently modulate TAMs polarization and reverse tumor immunosuppression by harnessing their chirality-specific interactions with biological systems. MoS2 /CoS2 nanoparticles coordinated with d-chirality (d-NPs, right-handed) show improved pharmacokinetics with longer circulating half-life and higher tumor accumulation compared with their l (left-handed)- and dl (racemate)-counterparts. Further, d-NPs can escape from macrophage uptake in the tumor microenvironment (TME) with the aid of cell-unpreferred opposite chirality and act as extracellular hydroxyl radicals (⋅OH) and oxygen (O2 ) generators to efficiently repolarize TAMs into M1 phenotype. On the contrary, l-NPs showed high cellular uptake due to chirality-driven homologous adhesion between l-NPs and macrophage membrane, leading to limited M1 polarization performance. As the first example for developing chiral nanozymes as extracellular-localized ROS generators to reprogram TAMs for cancer immunotherapy, this study opens an avenue for applications of chiral nanozymes in immunomodulation.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Especies Reactivas de Oxígeno , Molibdeno , Macrófagos , Microambiente Tumoral
16.
Nano Lett ; 23(11): 4965-4973, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37204482

RESUMEN

Although macroautophagy degradation targeting chimeras (MADTACs) have been demonstrated to be efficient in a broad spectrum from intracellular proteins to macromolecular complexes such as lipid droplets and the mitochondrion, MADTACs still face degradation of uncontrolled protein in normal cells and cause systemic toxicity, thus limiting their therapeutic applications. Herein, we employ bioorthogonal chemistry to develop a spatially controlled MADTACs strategy. Separated warheads display no activity in normal cells but can be activated by aptamer-based Cu nanocatalyst (Apt-Cu30) in tumors specifically. These in situ synthesized chimera molecules (bio-ATTECs) can degrade the mitochondrion in live tumor cells and subsequently induce autophagic cell death, which has been further demonstrated by lung metastasis melanoma murine models. To the best of our knowledge, this is the first bioorthogonal activated MADTAC in live cells for inducing autophagic tumor cell death, which may promote the development of cell-specific MADTACs for precision therapeutics by avoiding undesired side effects.


Asunto(s)
Mitofagia , Neoplasias , Animales , Humanos , Ratones , Autofagia , Oligonucleótidos , Neoplasias/tratamiento farmacológico
17.
Small ; 19(35): e2301519, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156740

RESUMEN

Combination therapies involving metabolic regulation and immune checkpoint blockade are considered an encouraging new strategy for cancer therapy. However, the effective utilization of combination therapies for activating tumor-associated macrophages (TAMs) remains challenging. Herein, a lactate-catalyzed chemodynamic approach to activate the therapeutic genome editing of signal-regulatory protein α (SIRPα) to reprogram TAMs and improve cancer immunotherapy is proposed. This system is constructed by encapsulating lactate oxidase (LOx) and clustered regularly interspaced short palindromic repeat-mediated SIRPα genome-editing plasmids in a metal-organic framework (MOF). The genome-editing system is released and activated by acidic pyruvate, which is produced by the LOx-catalyzed oxidation of lactate. The synergy between lactate exhaustion and SIRPα signal blockade can enhance the phagocytic ability of TAMs and promote the repolarization of TAMs to the antitumorigenic M1 phenotype. Lactate exhaustion-induced CD47-SIRPα blockade efficiently improves macrophage antitumor immune responses and effectively reverses the immunosuppressive tumor microenvironment to inhibit tumor growth, as demonstrated by in vitro and in vivo studies. This study provides a facile strategy for engineering TAMs in situ by combining CRISPR-mediated SIRPα knockout with lactate exhaustion for effective immunotherapy.


Asunto(s)
Edición Génica , Neoplasias , Humanos , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
18.
ACS Appl Mater Interfaces ; 15(18): 21854-21865, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37115671

RESUMEN

Chemotherapeutic drug-induced acute kidney injury (AKI) involves pathologically increased labile iron species in the kidneys that mediate the excessive generation of reactive oxygen species (ROS) to induce ferroptosis and apoptosis, subsequently driving renal dysfunction. Herein, we report renal clearable quantum dot-drug conjugates (QDCs) composed of carbon quantum dot (CDs), deferoxamine (DFO), and poly(ethylene glycol) (PEG) for attenuating chemotherapeutic drug-induced AKI. The CDs component in QDCs can not only provide DFO with high renal specificity to effectively remove the pathological labile iron species in the kidneys to block the source of ROS generation but also exert high antioxidative effects to avoid renal oxidative damage caused by the ROS that have been overproduced. In cisplatin-induced AKI mice, QDCs can inhibit ferroptosis and apoptosis with high efficacy for AKI treatment. This study will provide a new paradigm to realize enhanced therapeutic efficacy for AKI by simultaneously removing the pathological labile iron species and eliminating overproduced ROS in the kidneys to achieve the goal of addressing both symptoms and root causes.


Asunto(s)
Lesión Renal Aguda , Puntos Cuánticos , Ratones , Animales , Especies Reactivas de Oxígeno/farmacología , Hierro/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Radicales Libres , Riñón
19.
Nat Commun ; 14(1): 1974, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031242

RESUMEN

Precise discrimination and eradication of cancer cells by immune cells independent of antigen recognition is promising for solid tumor therapeutics, yet remains a tremendous challenge. Inspired by neutrophils, here we design and construct a tumor discrimination nanodevice based on the differential histone H1 isoform expression. In this nanodevice, neutrophil membrane camouflage and glutathione (GSH)-unlocking effect on Fe-porphyrin metal-organic framework structure ensures selectivity to cancer cells. The released porcine pancreatic elastase (PPE) simulates neutrophils' action to induce histone H1 release-dependent selective cancer cell killing. Meanwhile, nuclear localization signal (NLS) peptide-tagged porphyrin (porphyrin-NLS) acts as in-situ singlet oxygen (1O2) generator to amplify histone H1 nucleo-cytoplasmic translocation by inducing DNA double-strand breaks (DSBs) under laser irradiation, further promoting elimination of cancer cells. The overexpressed histone H1 isoform in cancer cells improves selectivity of our nanodevice to cancer cells. In vivo studies demonstrate that our design can not only inhibit primary tumor growth, but also induce adaptive T-cell response-mediated abscopal effect to against distal tumors.


Asunto(s)
Neoplasias , Elastasa Pancreática , Animales , Porcinos , Elastasa Pancreática/metabolismo , Histonas , Neutrófilos/metabolismo , Glutatión/metabolismo , Isoformas de Proteínas/metabolismo , Metales/metabolismo
20.
ACS Nano ; 17(9): 8141-8152, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37057955

RESUMEN

Targeted protein degradation has demonstrated the power to modulate protein homeostasis. For overcoming the limitation to intracellular protein degradation, lysosome targeting chimeras have been recently developed and successfully utilized to degrade a range of disease-relevant extracellular and membrane proteins. Inspired by this strategy, here we describe our proof-of-concept studies using metallohelix-based degraders to deliver the extracellular human islet amyloid polypeptide (hIAPP) into the lysosomes for degradation. Our designed metallohelix can bind and inhibit hIAPP aggregation, and the conjugated tri-GalNAc motif can target macrophage galactose-type lectin 1 (MGL1), yielding chimeric molecules that can both inhibit hIAPP aggregation and direct the bound hIAPP for lysosomal degradation in macrophages. Further studies demonstrate that the enhanced hIAPP clearance has been through the endolysosomal system and depends on MGL1-mediated endocytosis. Intriguingly, Λ enantiomers show even better efficiency in preventing hIAPP aggregation and promoting internalization and degradation of hIAPP than Δ enantiomers. Moreover, metallohelix-based degraders also faciltate the clearance of hIAPP through asialoglycoprotein receptor in liver cells. Overall, our studies demonstrate that chiral metallohelix can be employed for targeted degradation of extracellular misfolded proteins and possess enantioselectivity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/química , Estereoisomerismo , Amiloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA