Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Crit Care Med ; 47(3): e234-e240, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30507842

RESUMEN

OBJECTIVES: The detection of microbial volatile organic compounds or host response markers in the exhaled gas could give an earlier diagnosis of ventilator-associated pneumonia. Gas chromatography-ion mobility spectrometry enables noninvasive, rapid, and sensitive analysis of exhaled gas. Using a rabbit model of ventilator-associated pneumonia we determined if gas chromatography-ion mobility spectrometry is able to detect 1) ventilator-associated pneumonia specific changes and 2) bacterial species-specific changes in the exhaled gas. DESIGN: Experimental in vivo study. SETTING: University research laboratory. SUBJECTS: Female New Zealand White rabbits. INTERVENTIONS: Animals were anesthetized and mechanically ventilated. To induce changes in the composition of exhaled gas we induced ventilator-associated pneumonia via endobronchial instillation of either Escherichia coli group (n = 11) or Pseudomonas aeruginosa group (n = 11) after 2 hours of mechanical ventilation. In a control group (n = 11) we instilled sterile lysogeny broth endobronchially. MEASUREMENTS AND MAIN RESULTS: Gas chromatography-ion mobility spectrometry gas analysis, CT scans of the lungs, and blood samples were obtained at four measurement points during the 10 hours of mechanical ventilation. The volatile organic compound patterns in the exhaled gas were compared and correlated with ventilator-associated pneumonia severity. Sixty-seven peak areas showed changes in signal intensity in the serial gas analyses. The signal intensity changes in 10 peak regions differed between the groups. Five peak areas (P_648_36, indole, P_714_278, P_700_549, and P_727_557) showed statistically significant changes of signal intensity. CONCLUSIONS: This is the first in vivo study that shows the potential of gas chromatography-ion mobility spectrometry for early detection of ventilator-associated pneumonia specific volatile organic compounds and species differentiation by noninvasive analyses of exhaled gas.


Asunto(s)
Neumonía Asociada al Ventilador/diagnóstico , Compuestos Orgánicos Volátiles/análisis , Animales , Biomarcadores/análisis , Espiración , Femenino , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Movilidad Iónica , Pulmón/patología , Neumonía Asociada al Ventilador/patología , Conejos , Índice de Severidad de la Enfermedad
2.
Front Immunol ; 9: 2665, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30498501

RESUMEN

Heart failure due to pressure overload is frequently associated with inflammation. In addition to inflammatory responses of the innate immune system, autoimmune reactions of the adaptive immune system appear to be triggered in subgroups of patients with heart failure as demonstrated by the presence of autoantibodies against myocardial antigens. Moreover, T cell-deficient and T cell-depleted mice have been reported to be protected from heart failure induced by transverse aortic constriction (TAC) and we have shown recently that CD4+-helper T cells with specificity for an antigen in cardiomyocytes accelerate TAC-induced heart failure. In this study, we set out to investigate the potential contribution of CD8+-cytotoxic T cells with specificity to a model antigen (ovalbumin, OVA) in cardiomyocytes to pressure overload-induced heart failure. In 78% of cMy-mOVA mice with cardiomyocyte-specific OVA expression, a low-grade OVA-specific cellular cytotoxicity was detected after TAC. Adoptive transfer of OVA-specific CD8+-T cells from T cell receptor transgenic OT-I mice before TAC did not increase the risk of OVA-specific autoimmunity in cMy-mOVA mice. After TAC, again 78% of the mice displayed an OVA-specific cytotoxicity with on average only a three-fold higher killing of OVA-expressing target cells. More CD8+ cells were present after TAC in the myocardium of cMy-mOVA mice with OT-I T cells (on average 17.5/mm2) than in mice that did not receive OVA-specific CD8+-T cells (3.6/mm2). However, the extent of fibrosis was similar in both groups. Functionally, as determined by echocardiography, the adoptive transfer of OVA-specific CD8+-T cells did not significantly accelerate the progression from hypertrophy to heart failure in cMy-mOVA mice. These findings argue therefore against a major impact of cytotoxic T cells with specificity for autoantigens of cardiomyocytes in pressure overload-induced heart failure.


Asunto(s)
Autoantígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Insuficiencia Cardíaca/inmunología , Miocitos Cardíacos/inmunología , Traslado Adoptivo/métodos , Animales , Autoinmunidad/inmunología , Constricción , Citotoxicidad Inmunológica/inmunología , Progresión de la Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovalbúmina/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
3.
J Cardiovasc Magn Reson ; 19(1): 45, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28424090

RESUMEN

BACKGROUND: Endomyocardial biopsies (EMB) are an important diagnostic tool for myocarditis and other infiltrative cardiac diseases. Routinely, biopsies are obtained under fluoroscopic guidance with a substantial radiation burden. Despite procedural success, there is a large sampling error caused by missing the affected myocardium. Therefore, multiple (>6) biopsies are taken in the clinical setting. In cardiovascular magnetic resonance (CMR), late gadolinium enhancement (LGE) depicts areas of affected myocardium in myocarditis or in other infiltrative cardiomyopathies. Thus, targeted biopsy under real-time CMR image guidance might reduce the problem of sampling error. METHODS: Seven minipigs of the Goettingen strain underwent radiofrequency ablation in the left ventricle. At least two focal lesions were induced on the lateral wall in five and the apex in two animals. Each ablation lesion was created by two consecutive 30 sec ablations (max. 30 W, temperature 60-64 °C). Biopsies were taken immediately after lesion induction using a commercially available 7 F conventional bioptome under fluoroscopic guidance at the ablation site. Afterwards the animals underwent CMR and lesion visualization by LGE at 3T. The lesions were then targeted and biopsied under CMR-guidance using a MR-conditional bioptome guided by a steerable catheter. Interactive real-time (RT) visualization of the intervention on an in-room monitor was based on radial FLASH with nonlinear inverse reconstruction (NLINV) at a temporal resolution of 42 ms. All samples underwent a standard histological evaluation. RESULTS: Radiofrequency ablation was successful in all animals. Fluoroscopy-guided biopsies were performed with a success rate of 6/6 minipigs - resulting in a nonlethal pericardial effusion in one animal. Visualization of radiofrequency lesions by CMR was successful in 7/7 minipig, i.e. at least one lesion was clearly visible. Localization and tracking of the catheters and the bioptome using interactive control of the imaging plane was achieved in 6/6 MP; however in the animal with a large pericardial effusion after EMB under fluoroscopy no further EMB was attempted for safety reasons. Biopsies under interactive RT-CMR guidance were successfully performed in 5/6 animals, in one animal the bioptome reached the lesion, however the forceps did not cut out a sample. Specimens obtained under CMR guidance contained part of the lesion in 6/15 (40%) myocardial specimens and in 4/5 (80%) animals in which samples were achieved. Conventional biopsies revealed ablation lesions in 4/17 (23.5%) specimens in 3/6 minipigs (50%). CONCLUSION: Focal lesions induced by radiofrequency ablation in a minipig model are a useful tool for CMR-guided biopsy studies. In contrast to fluoroscopy, CMR provides excellent visualization of lesions. Interactive real-time CMR allows excellent passive tracking of the instruments and EMB provides significantly superior sampling accuracy compared to fluoroscopy-guided biopsies. Nonetheless, further improvements of MR-compatible bioptomes and guiding catheters are essential before applying this method in a clinical setting.


Asunto(s)
Ablación por Catéter , Ventrículos Cardíacos/cirugía , Biopsia Guiada por Imagen/métodos , Imagen por Resonancia Magnética Intervencional , Miocardio/patología , Animales , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Biopsia Guiada por Imagen/instrumentación , Valor Predictivo de las Pruebas , Radiografía Intervencional , Porcinos , Porcinos Enanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA