Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
iScience ; 27(6): 110157, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38952680

RESUMEN

Fusobacterium nucleatum is an oral commensal bacterium that can colonize extraoral tumor entities, such as colorectal cancer and breast cancer. Recent studies revealed its ability to modulate the immune response in the tumor microenvironment (TME), promoting cancer progression and metastasis. Importantly, F. nucleatum subsp. animalis was shown to bind to Siglec-7 via lipopolysaccharides, leading to a pro-inflammatory profile in human monocyte-derived dendritic cells. In this study, we show that F. nucleatum subsp. nucleatum RadD binds to Siglec-7 on NK cells, thereby inhibiting NK cell-mediated cancer cell killing. We demonstrate that this binding is dependent on arginine residue R124 in Siglec-7. Finally, we determine that this binding is independent of the known interaction of RadD with IgA. Taken together, our findings elucidate the targeting of Siglec-7 by F. nucleatum subsp. nucleatum RadD as a means to modulate the NK cell response and potentially promoting immune evasion and tumor progression.

2.
J Cell Biol ; 222(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37389656

RESUMEN

The GPI-anchoring pathway plays important roles in normal development and immune modulation. MHC Class I Polypeptide-related Sequence A (MICA) is a stress-induced ligand, downregulated by human cytomegalovirus (HCMV) to escape immune recognition. Its most prevalent allele, MICA*008, is GPI-anchored via an uncharacterized pathway. Here, we identify cleft lip and palate transmembrane protein 1-like protein (CLPTM1L) as a GPI-anchoring pathway component and show that during infection, the HCMV protein US9 downregulates MICA*008 via CLPTM1L. We show that the expression of some GPI-anchored proteins (CD109, CD59, and MELTF)-but not others (ULBP2, ULBP3)-is CLPTM1L-dependent, and further show that like MICA*008, MELTF is downregulated by US9 via CLPTM1L during infection. Mechanistically, we suggest that CLPTM1L's function depends on its interaction with a free form of PIG-T, normally a part of the GPI transamidase complex. We suggest that US9 inhibits this interaction and thereby downregulates the expression of CLPTM1L-dependent proteins. Altogether, we report on a new GPI-anchoring pathway component that is targeted by HCMV.


Asunto(s)
Infecciones por Citomegalovirus , Proteínas de la Membrana , Humanos , Alelos , Citomegalovirus , Proteínas de la Membrana/genética , Proteínas de Neoplasias , Factores de Transcripción , Infecciones por Citomegalovirus/metabolismo
3.
Oncoimmunology ; 12(1): 2217735, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261087

RESUMEN

The use of antibodies to block inhibitory receptors, primarily anti-PD1 and CTLA4 (known as checkpoint therapy) revolutionized cancer treatment. However, despite these successes, the majority of cancer patients do not respond to the checkpoint treatment, emphasizing the need for development of additional therapies, which are based on other inhibitory receptors. Human TIGIT is an inhibitory receptor expressed by Natural Killer (NK) and T cells and is mainly known to interact with PVR, Nectin-2, Nectin-3, and Nectin-4. Whether mouse TIGIT interacts with all of these ligands is still unclear. Additionally, the in vivo function of TIGIT against tumors is not completely understood. Here, we demonstrate that mouse TIGIT interacts with and is inhibited by mPVR only. Using CRISPR-Cas9 technology, we generated TIGIT-deficient mice and demonstrated that NK cell cytotoxicity and degranulation against two tumor types were lower in WT mice when compared to the TIGIT KO mice. Moreover, in vivo tumor progression was slower in TIGIT KO than in WT mice. Taken together, our data established that mTIGIT has only one ligand, PVR, and that in the absence of TIGIT tumors are killed better both in vitro and in vivo.


Asunto(s)
Neoplasias , Receptores Inmunológicos , Animales , Humanos , Ratones , Moléculas de Adhesión Celular/genética , Ligandos , Ratones Noqueados , Neoplasias/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA