Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
EMBO J ; 43(13): 2789-2812, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811853

RESUMEN

It has remained unknown how cells reduce cystine taken up from the extracellular space, which is a required step for further utilization of cysteine in key processes such as protein or glutathione synthesis. Here, we show that the thioredoxin-related protein of 14 kDa (TRP14, encoded by TXNDC17) is the rate-limiting enzyme for intracellular cystine reduction. When TRP14 is genetically knocked out, cysteine synthesis through the transsulfuration pathway becomes the major source of cysteine in human cells, and knockout of both pathways becomes lethal in C. elegans subjected to proteotoxic stress. TRP14 can also reduce cysteinyl moieties on proteins, rescuing their activities as here shown with cysteinylated peroxiredoxin 2. Txndc17 knockout mice were, surprisingly, protected in an acute pancreatitis model, concomitant with activation of Nrf2-driven antioxidant pathways and upregulation of transsulfuration. We conclude that TRP14 is the evolutionarily conserved enzyme principally responsible for intracellular cystine reduction in C. elegans, mice, and humans.


Asunto(s)
Caenorhabditis elegans , Cisteína , Cistina , Ratones Noqueados , Oxidación-Reducción , Proteoma , Tiorredoxinas , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Cistina/metabolismo , Ratones , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Cisteína/metabolismo , Proteoma/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética
2.
Free Radic Biol Med ; 207: 183-193, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37481144

RESUMEN

p53 is a redox-sensitive transcription factor that can regulate multiple cell death programs through different signaling pathways. In this review, we assess the role of p53 in the regulation of necroptosis, a programmed form of lytic cell death highly involved in the pathophysiology of multiple diseases. In particular, we focus on the role of mitochondrial reactive oxygen species (mtROS) as essential contributors to modulate necroptosis execution through p53. The enhanced generation of mtROS during necroptosis is critical for the correct interaction between receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and 3 (RIPK3), two key components of the functional necrosome. p53 controls the occurrence of necroptosis by modulating the levels of mitochondrial H2O2 via peroxiredoxin 3 and sulfiredoxin. Furthermore, in response to increased levels of H2O2, p53 upregulates the long non-coding RNA necrosis-related factor, favoring the translation of RIPK1 and RIPK3. In parallel, a fraction of cytosolic p53 migrates into mitochondria, a process notably involved in necroptosis execution via its interaction with the mitochondrial permeability transition pore. In conclusion, p53 is located at the intersection between mtROS and the necroptosis machinery, making it a key protein to orchestrate redox signaling during necroptosis.


Asunto(s)
Mitocondrias , Necroptosis , Proteína p53 Supresora de Tumor , Apoptosis/genética , Peróxido de Hidrógeno/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Necroptosis/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Humanos
3.
Redox Biol ; 56: 102423, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029648

RESUMEN

Mitochondrial dysfunction is a key contributor to necroptosis. We have investigated the contribution of p53, sulfiredoxin, and mitochondrial peroxiredoxin 3 to necroptosis in acute pancreatitis. Late during the course of pancreatitis, p53 was localized in mitochondria of pancreatic cells undergoing necroptosis. In mice lacking p53, necroptosis was absent, and levels of PGC-1α, peroxiredoxin 3 and sulfiredoxin were upregulated. During the early stage of pancreatitis, prior to necroptosis, sulfiredoxin was upregulated and localized into mitochondria. In mice lacking sulfiredoxin with pancreatitis, peroxiredoxin 3 was hyperoxidized, p53 localized in mitochondria, and necroptosis occurred faster; which was prevented by Mito-TEMPO. In obese mice, necroptosis occurred in pancreas and adipose tissue. The lack of p53 up-regulated sulfiredoxin and abrogated necroptosis in pancreas and adipose tissue from obese mice. We describe here a positive feedback between mitochondrial H2O2 and p53 that downregulates sulfiredoxin and peroxiredoxin 3 leading to necroptosis in inflammation and obesity.


Asunto(s)
Pancreatitis , Peroxiredoxina III , Enfermedad Aguda , Animales , Regulación hacia Abajo , Peróxido de Hidrógeno/metabolismo , Ratones , Ratones Obesos , Necroptosis , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Proteína p53 Supresora de Tumor/genética
4.
Antioxidants (Basel) ; 11(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35883885

RESUMEN

Macrophage polarization refers to the process by which macrophages can produce two distinct functional phenotypes: M1 or M2. The balance between both strongly affects the progression of inflammatory disorders. Here, we review how redox signals regulate macrophage polarization and reprogramming during acute inflammation. In M1, macrophages augment NADPH oxidase isoform 2 (NOX2), inducible nitric oxide synthase (iNOS), synaptotagmin-binding cytoplasmic RNA interacting protein (SYNCRIP), and tumor necrosis factor receptor-associated factor 6 increase oxygen and nitrogen reactive species, which triggers inflammatory response, phagocytosis, and cytotoxicity. In M2, macrophages down-regulate NOX2, iNOS, SYNCRIP, and/or up-regulate arginase and superoxide dismutase type 1, counteract oxidative and nitrosative stress, and favor anti-inflammatory and tissue repair responses. M1 and M2 macrophages exhibit different metabolic profiles, which are tightly regulated by redox mechanisms. Oxidative and nitrosative stress sustain the M1 phenotype by activating glycolysis and lipid biosynthesis, but by inhibiting tricarboxylic acid cycle and oxidative phosphorylation. This metabolic profile is reversed in M2 macrophages because of changes in the redox state. Therefore, new therapies based on redox mechanisms have emerged to treat acute inflammation with positive results, which highlights the relevance of redox signaling as a master regulator of macrophage reprogramming.

5.
Mol Neurobiol ; 58(1): 408-423, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32959172

RESUMEN

Despite the promising neuroprotective effects of uric acid (UA) in acute ischemic stroke, the seemingly pleiotropic underlying mechanisms are not completely understood. Recent evidence points to transcription factors as UA targets. To gain insight into the UA mechanism of action, we investigated its effects on pertinent biomarkers for the most relevant features of ischemic stroke pathophysiology: (1) oxidative stress (antioxidant enzyme mRNAs and MDA), (2) neuroinflammation (cytokine and Socs3 mRNAs, STAT3, NF-κB p65, and reactive microglia), (3) brain swelling (Vegfa, Mmp9, and Timp1 mRNAs), and (4) apoptotic cell death (Bcl-2, Bax, caspase-3, and TUNEL-positive cells). Adult male Wistar rats underwent intraluminal filament transient middle cerebral artery occlusion (tMCAO) and received UA (16 mg/kg) or vehicle (Locke's buffer) i.v. at 20 min reperfusion. The outcome measures were neurofunctional deficit, infarct, and edema. UA treatment reduced cortical infarct and brain edema, as well as neurofunctional impairment. In brain cortex, increased UA: (1) reduced tMCAO-induced increases in Vegfa and Mmp9/Timp1 ratio expressions; (2) induced Sod2 and Cat expressions and reduced MDA levels; (3) induced Il6 expression, upregulated STAT3 and NF-κB p65 phosphorylation, induced Socs3 expression, and inhibited microglia activation; and (4) ameliorated the Bax/Bcl-2 ratio and induced a reduction in caspase-3 cleavage as well as in TUNEL-positive cell counts. In conclusion, the mechanism for morphological and functional neuroprotection by UA in ischemic stroke is multifaceted, since it is associated to activation of the IL-6/STAT3 pathway, attenuation of edematogenic VEGF-A/MMP-9 signaling, and modulation of relevant mediators of oxidative stress, neuroinflammation, and apoptotic cell death.


Asunto(s)
Interleucina-6/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Neuroprotección/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Ácido Úrico/farmacología , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Edema Encefálico/etiología , Edema Encefálico/patología , Edema Encefálico/fisiopatología , Infarto Encefálico/etiología , Infarto Encefálico/fisiopatología , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/fisiopatología , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/fisiopatología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Ácido Úrico/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Redox Biol ; 34: 101528, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32388267

RESUMEN

Hepatocellular carcinoma (HCC) represents 80% of the primary hepatic neoplasms. It is the sixth most frequent neoplasm, the fourth cause of cancer-related death, and 7% of registered malignancies. Sorafenib is the first line molecular targeted therapy for patients in advanced stage of HCC. The present study shows that Sorafenib exerts free radical scavenging properties associated with the downregulation of nuclear factor E2-related factor 2 (Nrf2)-regulated thioredoxin 1 (Trx1) expression in liver cancer cells. The experimental downregulation and/or overexpression strategies showed that Trx1 induced activation of nitric oxide synthase (NOS) type 3 (NOS3) and S-nitrosation (SNO) of CD95 receptor leading to an increase of caspase-8 activity and cell proliferation, as well as reduction of caspase-3 activity in liver cancer cells. In addition, Sorafenib transiently increased mRNA expression and activity of S-nitrosoglutathione reductase (GSNOR) in HepG2 cells. Different experimental models of hepatocarcinogenesis based on the subcutaneous implantation of HepG2 cells in nude mice, as well as the induction of HCC by diethylnitrosamine (DEN) confirmed the relevance of Trx1 downregulation during the proapoptotic and antiproliferative properties induced by Sorafenib. In conclusion, the induction of apoptosis and antiproliferative properties by Sorafenib were related to Trx1 downregulation that appeared to play a relevant role on SNO of NOS3 and CD95 in HepG2 cells. The transient increase of GSNOR might also participate in the deactivation of CD95-dependent proliferative signaling in liver cancer cells.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Ratones , Ratones Desnudos , Nitrosación , Compuestos de Fenilurea , Sorafenib/farmacología , Tiorredoxinas/genética
7.
Redox Biol ; 28: 101324, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31539805

RESUMEN

Acute pancreatitis is an inflammatory process of the pancreatic gland that may lead to dysregulation of the trans-sulfuration pathway. The aims of this work were firstly to study the methionine cycle as well as the trans-sulfuration pathway using metabolomic and proteomic approaches identifying the causes of this dysregulation in an experimental model of acute pancreatitis; and secondly to reveal the effects of S-adenosylmethionine administration on these pathways. Acute pancreatitis was induced by cerulein in mice, and a group of animals received S-adenosylmethionine treatment. Cerulein-induced acute pancreatitis rapidly caused marked depletion of methionine, S-adenosylmethionine, 5'-methylthioadenosine, cystathionine, cysteine, and glutathione levels in pancreas, but S-adenosylhomocysteine and homocysteine remained unchanged. Protein steady-state levels of S-adenosylhomocysteine-hydrolase and cystathionine gamma-lyase diminished but methylthioadenosine phosphorylase levels increased in pancreas with acute pancreatitis. Although cystathionine ß-synthase protein levels did not change with acute pancreatitis, Nos2 mRNA and protein levels were markedly up-regulated and caused tyrosine nitration of cystathionine ß-synthase in pancreas. S-adenosylmethionine administration enhanced Nos2 mRNA expression and cystathionine ß-synthase nitration and triggered homocysteine accumulation in acute pancreatitis. Furthermore, S-adenosylmethionine administration promoted enrichment of the euchromatin marker H3K4me3 in the promoters of Tnf-α, Il-6, and Nos2 and enhanced the mRNA up-regulation of these genes. Accordingly, S-adenosylmethionine administration increased inflammatory infiltrate and edema in pancreas with acute pancreatitis. In conclusion, tyrosine-nitration of cystathionine ß-synthase blockades the trans-sulfuration pathway in acute pancreatitis promoting homocysteine accumulation upon S-adenosylmethionine treatment.


Asunto(s)
Ceruletida/efectos adversos , Cistationina betasintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Pancreatitis/metabolismo , Animales , Cistationina/metabolismo , Cisteína/metabolismo , Modelos Animales de Enfermedad , Glutatión/metabolismo , Homocisteína/metabolismo , Masculino , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/etiología , S-Adenosilmetionina/administración & dosificación , Regulación hacia Arriba
8.
Antioxid Redox Signal ; 33(3): 145-165, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-31856585

RESUMEN

Significance: Nuclear factor kappa B (NF-κB) is a master regulator of the inflammatory response and represents a key regulatory node in the complex inflammatory signaling network. In addition, selective NF-κB transcriptional activity on specific target genes occurs through the control of redox-sensitive NF-κB interactions. Recent Advances: The selective NF-κB response is mediated by redox-modulated NF-κB complexes with ribosomal protein S3 (RPS3), Pirin (PIR). cAMP response element-binding (CREB)-binding protein (CBP)/p300, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), activator protein-1 (AP-1), signal transducer and activator of transcription 3 (STAT3), early growth response protein 1 (EGR-1), and SP-1. NF-κB is cooperatively coactivated with AP-1, STAT3, EGR-1, and SP-1 during the inflammatory process, whereas NF-κB complexes with CBP/p300 and PGC-1α regulate the expression of antioxidant genes. PGC-1α may act as selective repressor of phospho-p65 toward interleukin-6 (IL-6) in acute inflammation. p65 and nuclear factor erythroid 2-related factor 2 (NRF2) compete for binding to coactivator CBP/p300 playing opposite roles in the regulation of inflammatory genes. S-nitrosylation or tyrosine nitration favors the recruitment of specific NF-κB subunits to κB sites. Critical Issues: NF-κB is a redox-sensitive transcription factor that forms specific signaling complexes to regulate selectively the expression of target genes in acute inflammation. Protein-protein interactions with coregulatory proteins, other transcription factors, and chromatin-remodeling proteins provide transcriptional specificity to NF-κB. Furthermore, different NF-κB subunits may form distinct redox-sensitive homo- and heterodimers with distinct affinities for κB sites. Future Directions: Further research is required to elucidate the whole NF-κB interactome to fully characterize the complex NF-κB signaling network in redox signaling, inflammation, and cancer.


Asunto(s)
Proteínas Portadoras/metabolismo , Inflamación/metabolismo , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Enfermedad Aguda , Biomarcadores , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Humanos , Inflamación/etiología , Inflamación/patología , Unión Proteica
9.
J Pathol ; 247(1): 48-59, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30221360

RESUMEN

Obesity is associated with local and systemic complications in acute pancreatitis. PPARγ coactivator 1α (PGC-1α) is a transcriptional coactivator and master regulator of mitochondrial biogenesis that exhibits dysregulation in obese subjects. Our aims were: (1) to study PGC-1α levels in pancreas from lean or obese rats and mice with acute pancreatitis; and (2) to determine the role of PGC-1α in the inflammatory response during acute pancreatitis elucidating the signaling pathways regulated by PGC-1α. Lean and obese Zucker rats and lean and obese C57BL6 mice were used first; subsequently, wild-type and PGC-1α knockout (KO) mice with cerulein-induced pancreatitis were used to assess the inflammatory response and expression of target genes. Ppargc1a mRNA and protein levels were markedly downregulated in pancreas of obese rats and mice versus lean animals. PGC-1α protein levels increased in pancreas of lean mice with acute pancreatitis, but not in obese mice with pancreatitis. Interleukin-6 (Il6) mRNA levels were dramatically upregulated in pancreas of PGC-1α KO mice after cerulein-induced pancreatitis in comparison with wild-type mice with pancreatitis. Edema and the inflammatory infiltrate were more intense in pancreas from PGC-1α KO mice than in wild-type mice. The lack of PGC-1α markedly enhanced nuclear translocation of phospho-p65 and recruitment of p65 to Il6 promoter. PGC-1α bound phospho-p65 in pancreas during pancreatitis in wild-type mice. Glutathione depletion in cerulein-induced pancreatitis was more severe in KO mice than in wild-type mice. PGC-1α KO mice with pancreatitis, but not wild-type mice, exhibited increased myeloperoxidase activity in the lungs, together with alveolar wall thickening and collapse, which were abrogated by blockade of the IL-6 receptor glycoprotein 130 with LMT-28. In conclusion, obese rodents exhibit PGC-1α deficiency in the pancreas. PGC-1α acts as selective repressor of nuclear factor-κB (NF-κB) towards IL-6 in pancreas. PGC-1α deficiency markedly enhanced NF-κB-mediated upregulation of Il6 in pancreas in pancreatitis, leading to a severe inflammatory response. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Interleucina-6/metabolismo , FN-kappa B/metabolismo , Obesidad/metabolismo , Páncreas/metabolismo , Pancreatitis/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/deficiencia , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Ceruletida , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Obesidad/genética , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fosforilación , Ratas Zucker , Transducción de Señal , Ácido Taurocólico , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba
10.
Redox Biol ; 16: 276-284, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29567616

RESUMEN

p38α is a redox sensitive MAPK activated by pro-inflammatory cytokines and environmental, genotoxic and endoplasmic reticulum stresses. The aim of this work was to assess whether p38α controls the antioxidant defense in the liver, and if so, to elucidate the mechanism(s) involved and the age-related changes. For this purpose, we used liver-specific p38α-deficient mice at two different ages: young-mice (4 months-old) and old-mice (24 months-old). The liver of young p38α knock-out mice exhibited a decrease in GSH levels and an increase in GSSG/GSH ratio and malondialdehyde levels. However, old mice deficient in p38α had higher hepatic GSH levels and lower GSSG/GSH ratio than young p38α knock-out mice. Liver-specific p38α deficiency triggered a dramatic down-regulation of the mRNAs of the key antioxidant enzymes glutamate cysteine ligase, superoxide dismutase 1, superoxide dismutase 2, and catalase in young mice, which seems mediated by the lack of p65 recruitment to their promoters. Nrf-2 nuclear levels did not change significantly in the liver of young mice upon p38α deficiency, but nuclear levels of phospho-p65 and PGC-1α decreased in these mice. p38α-dependent activation of NF-κB seems to occur through classical IκB Kinase and via ribosomal S6 kinase1 and AKT in young mice. However, unexpectedly the long-term deficiency in p38α triggers a compensatory up-regulation of antioxidant enzymes via NF-κB activation and recruitment of p65 to their promoters. In conclusion, p38α MAPK maintains the expression of antioxidant genes in liver of young animals via NF-κΒ under basal conditions, whereas its long-term deficiency triggers compensatory up-regulation of antioxidant enzymes through NF-κΒ.


Asunto(s)
Envejecimiento/genética , Antioxidantes/metabolismo , Hígado/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Catalasa/genética , Estrés del Retículo Endoplásmico/genética , Regulación Enzimológica de la Expresión Génica , Glutamato-Cisteína Ligasa/genética , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Redox Biol ; 11: 701-707, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28187322

RESUMEN

No-caloric sweeteners, such as aspartame, are widely used in various food and beverages to prevent the increasing rates of obesity and diabetes mellitus, acting as tools in helping control caloric intake. Aspartame is metabolized to phenylalanine, aspartic acid, and methanol. Our aim was to study the effect of chronic administration of aspartame on glutathione redox status and on the trans-sulphuration pathway in mouse liver. Mice were divided into three groups: control; treated daily with aspartame for 90 days; and treated with aspartame plus N-acetylcysteine (NAC). Chronic administration of aspartame increased plasma alanine aminotransferase (ALT) and aspartate aminotransferase activities and caused liver injury as well as marked decreased hepatic levels of reduced glutathione (GSH), oxidized glutathione (GSSG), γ-glutamylcysteine ​​(γ-GC), and most metabolites of the trans-sulphuration pathway, such as cysteine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine ​​(SAH). Aspartame also triggered a decrease in mRNA and protein levels of the catalytic subunit of glutamate cysteine ligase (GCLc) and cystathionine γ-lyase, and in protein levels of methionine adenosyltransferase 1A and 2A. N-acetylcysteine prevented the aspartame-induced liver injury and the increase in plasma ALT activity as well as the decrease in GSH, γ-GC, cysteine, SAM and SAH levels and GCLc protein levels. In conclusion, chronic administration of aspartame caused marked hepatic GSH depletion, which should be ascribed to GCLc down-regulation and decreased cysteine levels. Aspartame triggered blockade of the trans-sulphuration pathway at two steps, cystathionine γ-lyase and methionine adenosyltransferases. NAC restored glutathione levels as well as the impairment of the trans-sulphuration pathway.


Asunto(s)
Aspartame/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Glutatión/metabolismo , Edulcorantes/efectos adversos , Acetilcisteína/administración & dosificación , Animales , Aspartame/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Cistationina gamma-Liasa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato-Cisteína Ligasa/genética , Humanos , Hígado/metabolismo , Hígado/patología , Metionina Adenosiltransferasa/genética , Ratones , Edulcorantes/administración & dosificación
12.
PLoS One ; 12(2): e0171738, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28166285

RESUMEN

BACKGROUND: Hepatocyte poliploidization is an age-dependent process, being cytokinesis failure the main mechanism of polyploid hepatocyte formation. Our aim was to study the role of p38α MAPK in the regulation of actin cytoskeleton and cytokinesis in hepatocytes during development and aging. METHODS: Wild type and p38α liver-specific knock out mice at different ages (after weaning, adults and old) were used. RESULTS: We show that p38α MAPK deficiency induces actin disassembly upon aging and also cytokinesis failure leading to enhanced binucleation. Although the steady state levels of cyclin D1 in wild type and p38α knock out old livers remained unaffected, cyclin B1- a marker for G2/M transition- was significantly overexpressed in p38α knock out mice. Our findings suggest that hepatocytes do enter into S phase but they do not complete cell division upon p38α deficiency leading to cytokinesis failure and binucleation. Moreover, old liver-specific p38α MAPK knock out mice exhibited reduced F-actin polymerization and a dramatic loss of actin cytoskeleton. This was associated with abnormal hyperactivation of RhoA and Cdc42 GTPases. Long-term p38α deficiency drives to inactivation of HSP27, which seems to account for the impairment in actin cytoskeleton as Hsp27-silencing decreased the number and length of actin filaments in isolated hepatocytes. CONCLUSIONS: p38α MAPK is essential for actin dynamics with age in hepatocytes.


Asunto(s)
Actinas/metabolismo , Citocinesis , Citoesqueleto/metabolismo , Hepatocitos/fisiología , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Actinas/química , Animales , Biomarcadores , Células Cultivadas , Senescencia Celular , Citocinesis/genética , Técnicas de Inactivación de Genes , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 14 Activada por Mitógenos/genética , Mitosis/genética , Unión Proteica , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/metabolismo
13.
Free Radic Biol Med ; 104: 75-103, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28062361

RESUMEN

Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/ß-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/ß-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.


Asunto(s)
Enfermedades Gastrointestinales/metabolismo , Tracto Gastrointestinal/metabolismo , NADPH Oxidasas/metabolismo , Estrés Oxidativo , Proliferación Celular/genética , Enfermedades Gastrointestinales/patología , Tracto Gastrointestinal/patología , Humanos , Mucosa Intestinal/metabolismo , Intestinos/patología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA