Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Chem Biol ; 9(11): 731-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24077179

RESUMEN

Notch signaling has a pivotal role in numerous cell-fate decisions, and its aberrant activity leads to developmental disorders and cancer. To identify molecules that influence Notch signaling, we screened nearly 17,000 compounds using automated microscopy to monitor the trafficking and processing of a ligand-independent Notch-enhanced GFP (eGFP) reporter. Characterization of hits in vitro by biochemical and cellular assays and in vivo using zebrafish led to five validated compounds, four of which induced accumulation of the reporter at the plasma membrane by inhibiting γ-secretase. One compound, the dihydropyridine FLI-06, disrupted the Golgi apparatus in a manner distinct from that of brefeldin A and golgicide A. FLI-06 inhibited general secretion at a step before exit from the endoplasmic reticulum (ER), which was accompanied by a tubule-to-sheet morphological transition of the ER, rendering FLI-06 the first small molecule acting at such an early stage in secretory traffic. These data highlight the power of phenotypic screening to enable investigations of central cellular signaling pathways.


Asunto(s)
Dihidropiridinas/farmacología , Retículo Endoplásmico/efectos de los fármacos , Receptores Notch/antagonistas & inhibidores , Vías Secretoras/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Dihidropiridinas/química , Retículo Endoplásmico/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Estructura Molecular , Receptores Notch/metabolismo , Relación Estructura-Actividad , Pez Cebra/metabolismo
2.
J Biol Chem ; 287(42): 35565-35575, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22927438

RESUMEN

The Kcnh1 gene encodes a voltage-gated potassium channel highly expressed in neurons and involved in tumor cell proliferation, yet its physiological roles remain unclear. We have used the zebrafish as a model to analyze Kcnh1 function in vitro and in vivo. We found that the kcnh1 gene is duplicated in teleost fish (i.e. kcnh1a and kcnh1b) and that both genes are maternally expressed during early development. In adult zebrafish, kcnh1a and kcnh1b have distinct expression patterns but share expression in brain and testis. Heterologous expression of both genes in Xenopus oocytes revealed a strong conservation of characteristic functional properties between human and fish channels, including a unique sensitivity to intracellular Ca(2+)/calmodulin and modulation of voltage-dependent gating by extracellular Mg(2+). Using a morpholino antisense approach, we demonstrate a strong kcnh1 loss-of-function phenotype in developing zebrafish, characterized by growth retardation, delayed hindbrain formation, and embryonic lethality. This late phenotype was preceded by transcriptional up-regulation of known cell-cycle inhibitors (p21, p27, cdh2) and down-regulation of pro-proliferative factors, including cyclin D1, at 70% epiboly. These results reveal an unanticipated basic activity of kcnh1 that is crucial for early embryonic development and patterning.


Asunto(s)
Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Canales de Potasio con Entrada de Voltaje/biosíntesis , Transcripción Genética/fisiología , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Ciclina D1/genética , Ciclina D1/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Humanos , Masculino , Especificidad de Órganos/fisiología , Canales de Potasio con Entrada de Voltaje/genética , Rombencéfalo/embriología , Xenopus laevis , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
Dev Biol ; 306(2): 560-71, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17462622

RESUMEN

Polysialic acid (PSA) is a developmentally regulated carbohydrate attached to the neural cell adhesion molecule (NCAM). PSA is involved in dynamic processes like cell migration, neurite outgrowth and neuronal plasticity. In mammals, polysialylation of NCAM is catalyzed independently by two polysialyltransferases, STX (ST8Sia II) and PST (ST8Sia IV), with STX mainly acting during early development and PST at later stages and into adulthood. Here, we functionally characterize zebrafish Stx and Pst homolog genes during fish development and evaluate their catalytic affinity for NCAM in vitro. Both genes have the typical gene architecture and share conserved synteny with their mammalian homologues. Expression analysis, gene-targeted knockdown experiments and in vitro catalytic assays indicate that zebrafish Stx is the principal--if not unique--polysialyltransferase performing NCAM-PSA modifications in both developing and adult fish. The knockdown of Stx exclusively affects PSA synthesis, producing defects in axonal growth and guidance. Zebrafish Pst is in principle capable of synthesizing PSA, however, our data argue against a fundamental function of the enzyme during development. Our findings reveal an important divergence of Stx and Pst enzymes in vertebrates, which is also characterized by a differential gene loss and rapid evolution of Pst genes within the bony-fish class.


Asunto(s)
Evolución Biológica , Moléculas de Adhesión de Célula Nerviosa/fisiología , Sialiltransferasas/fisiología , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mamíferos , Datos de Secuencia Molecular , Oligonucleótidos/química , Homología de Secuencia de Aminoácido , Ácidos Siálicos/metabolismo , Sialiltransferasas/metabolismo , Especificidad de la Especie , Pez Cebra
4.
Biochem J ; 403(2): 313-22, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17206938

RESUMEN

Reggie-1 and -2 proteins (flotillin-2 and -1 respectively) form their own type of non-caveolar membrane microdomains, which are involved in important cellular processes such as T-cell activation, phagocytosis and signalling mediated by the cellular prion protein and insulin; this is consistent with the notion that reggie microdomains promote protein assemblies and signalling. While it is generally known that membrane microdomains contain large multiprotein assemblies, the exact organization of reggie microdomains remains elusive. Using chemical cross-linking approaches, we have demonstrated that reggie complexes are composed of homo- and hetero-tetramers of reggie-1 and -2. Moreover, native reggie oligomers are indeed quite stable, since non-cross-linked tetramers are resistant to 8 M urea treatment. We also show that oligomerization requires the C-terminal but not the N-terminal halves of reggie-1 and -2. Using deletion constructs, we analysed the functional relevance of the three predicted coiled-coil stretches present in the C-terminus of reggie-1. We confirmed experimentally that reggie-1 tetramerization is dependent on the presence of coiled-coil 2 and, partially, of coiled-coil 1. Furthermore, since depletion of reggie-1 by siRNA (small interfering RNA) silencing induces proteasomal degradation of reggie-2, we conclude that the protein stability of reggie-2 depends on the presence of reggie-1. Our data indicate that the basic structural units of reggie microdomains are reggie homo- and hetero-tetramers, which are dependent on the presence of reggie-1.


Asunto(s)
Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Línea Celular Tumoral , Reactivos de Enlaces Cruzados , Eliminación de Gen , Genes Reporteros/genética , Proteínas de la Membrana/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , Ratas , Succinimidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA