Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Pharmaceutics ; 16(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794326

RESUMEN

BACKGROUND: The identification of novel therapeutic strategies for ovarian cancer (OC), the most lethal gynecological neoplasm, is of utmost urgency. Here, we have tested the effectiveness of the compound 2c (4-hydroxy-2,6-bis(4-nitrobenzylidene)cyclohexanone 2). 2c interferes with the cysteine-dependent deubiquitinating enzyme (DUB) UCHL5, thus affecting the ubiquitin-proteasome-dependent degradation of proteins. METHODS: 2c phenotypic/molecular effects were studied in two OC 2D/3D culture models and in a mouse xenograft model. Furthermore, we propose an in silico model of 2c interaction with DUB-UCHL5. Finally, we have tested the effect of 2c conjugated to several linkers to generate 2c/derivatives usable for improved drug delivery. RESULTS: 2c effectively impairs the OC cell line and primary tumor cell viability in both 2D and 3D conditions. The effectiveness is confirmed in a xenograft mouse model of OC. We show that 2c impairs proteasome activity and triggers apoptosis, most likely by interacting with DUB-UCHL5. We also propose a mechanism for the interaction with DUB-UCHL5 via an in silico evaluation of the enzyme-inhibitor complex. 2c also reduces cell growth by down-regulating the level of the transcription factor E2F1. Eventually, 2c activity is often retained after the conjugation with linkers. CONCLUSION: Our data strongly support the potential therapeutic value of 2c/derivatives in OC.

2.
Dalton Trans ; 53(18): 7939-7945, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38646683

RESUMEN

A series of novel dinuclear NHC-gold-thiolato and -alkynyl complexes bearing aromatic linkers were successfully synthesized by an efficient and simple synthetic route. The catalytic activity of these complexes was tested in a lactonization reaction. The reaction proceeds in high efficiency, in short reaction time and under mild conditions, and is complementary to existing methods. Furthermore, the digold(I)-thiolato derivatives exhibit remarkable cytotoxicity towards several cancer cell lines.

3.
Dalton Trans ; 53(19): 8463-8477, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38686752

RESUMEN

In continuation of our previous works on the cytotoxic properties of organopalladium compounds, in this contribution we describe the first systematic study of the anticancer activity of Pd(II)-aryl complexes. To this end, we have prepared and thoroughly characterized a wide range of palladium derivatives bearing different diphosphine, aryl and halide ligands, developing, when necessary, specific synthetic protocols. Most of the synthesized compounds showed remarkable cytotoxicity towards ovarian and breast cancer cell lines, with IC50 values often comparable to or lower than that of cisplatin. The most promising complexes ([PdI(Ph)(dppe)] and [PdI(p-CH3-Ph)(dppe)]), characterized by a diphosphine ligand with a low bite angle, exhibited, in addition to excellent cytotoxicity towards cancer cells, low activity on normal cells (MRC5 human lung fibroblasts). Specific immunofluorescence tests (cytochrome c and H2AX assays), performed to clarify the possible mechanism of action of this class of organopalladium derivatives, seemed to indicate DNA as the primary cellular target, whereas caspase 3/7 assays proved that the complex [PdI(Ph)(dppe)] was able to promote intrinsic apoptotic cell death. A detailed molecular docking analysis confirmed the importance of a diphosphine ligand with a reduced bite angle to ensure a strong DNA-complex interaction. Finally, one of the most promising complexes was tested towards patient-derived organoids, showing promising ex vivo cytotoxicity.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Simulación del Acoplamiento Molecular , Paladio , Fosfinas , Humanos , Paladio/química , Paladio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Fosfinas/química , Fosfinas/farmacología , Ligandos , Relación Estructura-Actividad , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Estructura Molecular
4.
J Mater Chem B ; 12(16): 3807-3839, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38529820

RESUMEN

This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy. We critically examine the significant advancements in developing these nanocarriers, with a focus on their unique properties such as biocompatibility, targeted drug release, and enhanced skin permeability. These attributes are instrumental in addressing the limitations inherent in traditional skin cancer treatments and represent a paradigm shift towards more effective and patient-friendly therapeutic approaches. Furthermore, we discuss the challenges faced in optimizing the synthesis process for large-scale production while ensuring environmental sustainability. The review also emphasizes the immense potential for clinical applications of these nanocarriers in skin cancer therapy, highlighting their role in facilitating targeted, controlled drug release which minimizes systemic side effects. Future clinical applications could see these nanocarriers being customized to individual patient profiles, potentially revolutionizing personalized medicine in oncology. With further research and clinical trials, these nanocarriers hold the promise of transforming the landscape of skin cancer treatment. With this study, we aim to provide a comprehensive overview of the current state of research in this field and outline future directions for advancing the development and clinical application of these innovative nanocarriers.


Asunto(s)
Administración Cutánea , Antineoplásicos , Ciclodextrinas , Estructuras Metalorgánicas , Neoplasias Cutáneas , Estructuras Metalorgánicas/química , Humanos , Ciclodextrinas/química , Neoplasias Cutáneas/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Animales , Portadores de Fármacos/química
5.
Sci Rep ; 14(1): 6280, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491077

RESUMEN

Amiodarone repositioning in cancer treatment is promising, however toxicity limits seem to arise, constraining its exploitability. Notably, amiodarone has been investigated for the treatment of ovarian cancer, a tumour known for metastasizing within the peritoneal cavity. This is associated with an increase of fatty acid oxidation, which strongly depends on CPT1A, a transport protein which has been found overexpressed in ovarian cancer. Amiodarone is an inhibitor of CPT1A but its role still has to be explored. Therefore, in the present study, amiodarone was tested on ovarian cancer cell lines with a focus on lipid alteration, confirming its activity. Moreover, considering that drug delivery systems could lower drug side effects, microfluidics was employed for the development of drug delivery systems of amiodarone obtaining simultaneously liposomes with a high payload and amiodarone particles. Prior to amiodarone loading, microfluidics production was optimized in term of temperature and flow rate ratio. Moreover, stability over time of particles was evaluated. In vitro tests confirmed the efficacy of the drug delivery systems.


Asunto(s)
Amiodarona , Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Amiodarona/farmacología , Amiodarona/uso terapéutico , Reposicionamiento de Medicamentos , Microfluídica , Liposomas/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología
6.
Mar Pollut Bull ; 202: 116231, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554685

RESUMEN

Microplastic (MP) pollution poses a global concern, especially for benthic invertebrates. This one-month study investigated the accumulation of small MP polymers (polypropylene and polyester resin, 3-500 µm, 250 µg L-1) in benthic invertebrates and on one alga species. Results revealed species-specific preferences for MP size and type, driven by ingestion, adhesion, or avoidance behaviours. Polyester resin accumulated in Mytilus galloprovincialis, Chamelea gallina, Hexaplex trunculus, and Paranemonia cinerea, while polypropylene accumulated on Ulva rigida. Over time, MP accumulation decreased in count but not size, averaging 6.2 ± 5.0 particles per individual after a month. MP were mainly found inside of the organisms, especially in the gut, gills, and gonads and externally adherent MP ranged from 11 to 35 % of the total. Biochemical energy assessments after two weeks of MP exposure indicated energy gains for water column species but energy loss for sediment-associated species, highlighting the susceptibility of infaunal benthic communities to MP contamination.


Asunto(s)
Monitoreo del Ambiente , Invertebrados , Microplásticos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Organismos Acuáticos , Ecosistema
7.
Molecules ; 29(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474631

RESUMEN

A wide range of platinum(0)-η2-(E)-1,2-ditosylethene complexes bearing isocyanide, phosphine and N-heterocyclic carbene ancillary ligands have been prepared with high yields and selectivity. All the novel products underwent thorough characterization using spectroscopic techniques, including NMR and FT-IR analyses. Additionally, for some compounds, the solid-state structures were elucidated through X-ray diffractometry. The synthesized complexes were successively evaluated for their potential as anticancer agents against two ovarian cancer cell lines (A2780 and A2780cis) and one breast cancer cell line (MDA-MB-231). The majority of the compounds displayed promising cytotoxicity within the micromolar range against A2780 and MDA-MB-231 cells, with IC50 values comparable to or even surpassing those of cisplatin. However, only a subset of compounds was cytotoxic against cisplatin-resistant cancer cells (A2780cis). Furthermore, the assessment of antiproliferative activity on MRC-5 normal cells revealed certain compounds to exhibit in vitro selectivity. Notably, complexes 3d, 6a and 6b showed low cytotoxicity towards normal cells (IC50 > 100 µM) while concurrently displaying potent cytotoxicity against cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Complejos de Coordinación , Metano/análogos & derivados , Neoplasias Ováricas , Fosfinas , Femenino , Humanos , Cisplatino/química , Platino (Metal)/química , Línea Celular Tumoral , Cianuros , Espectroscopía Infrarroja por Transformada de Fourier , Complejos de Coordinación/química , Antineoplásicos/química , Ligandos
8.
Adv Healthc Mater ; : e2304206, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334216

RESUMEN

Primary human omental adipocytes and ovarian cancer(OC) cells establish a bidirectional communication in which tumor driven lipolysis is induced in adipocytes and the resulting fatty acids are delivered to cancer cells within the tumor microenvironment. Despite meaningful improvement in the treatment of OC, its efficacy is still limited by hydrophobicity and untargeted effects related to chemotherapeutics. Herein, omental adipocytes are firstly used as a reservoir for paclitaxel, named Living Paclitaxel Bullets (LPB) and secondly benefit from the established dialogue between adipocytes and cancer cells to engineer a drug delivery process that target specifically cancer cells. These results show that mature omental adipocytes can successfully uptake paclitaxel and deliver it to OC cells in a transwell coculture based in vitro model. In addition, the efficacy of this proof-of-concept has been demonstrated in vivo and induces a significant inhibition of tumor growth on a xenograft tumor model. The use of mature adipocytes can be suitable for clinical prospection in a cell-based therapy system, due to their mature and differentiated state, to avoid risks related to uncontrolled cell de novo proliferation capacity after the delivery of the antineoplastic drug as observed with other cell types when employed as drug carriers.

9.
Nanoscale ; 16(10): 5206-5214, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38375540

RESUMEN

The immune checkpoint programmed death ligand 1 (PD-L1) protein is expressed by tumor cells and it suppresses the killer activity of CD8+ T-lymphocyte cells binding to the programmed death 1 (PD-1) protein of these immune cells. Binding to either PD-L1 or PD1 is used for avoiding the inactivation of CD8+ T-lymphocyte cells. We report, for the first time, Au plasmonic nanostructures with surface-enhanced Raman scattering (SERS) properties (SERS nanostructures) and functionalized with an engineered peptide (CLP002: Trp-His-Arg-Ser-Tyr-Tyr-Thr-Trp-Asn-Leu-Asn-Thr), which targets PD-L1. Molecular dynamics calculations are used to describe the interaction of the targeting peptide with PD-L1 in the region where the interaction with PD-1 occurs, showing also the poor targeting activity of a peptide with the same amino acids, but a scrambled sequence. The results are confirmed experimentally since a very good targeting activity is observed against the MDA-MB-231 breast adenocarcinoma cancer cell line, which overexpresses PD-L1. A good activity is observed, in particular, for SERS nanostructures where the CLP002-engineered peptide is linked to the nanostructure surface with a short charged amino acid sequence and a long PEG chain. The results show that the functionalized SERS nanostructures show very good targeting of the immune checkpoint PD-L1.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Nanoestructuras , Humanos , Femenino , Proteínas de Punto de Control Inmunitario , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Péptidos/química
10.
Molecules ; 29(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257258

RESUMEN

A new class of palladium-indenyl complexes characterized by the presence of one bulky alkyl isocyanide and one aryl phosphine serving as ancillary ligands has been prepared, presenting high yields and selectivity. All the new products were completely characterized using spectroscopic and spectrometric techniques (NMR, FT-IR, and HRMS), and, for most of them, it was also possible to define their solid-state structures via X-ray diffractometry, revealing that the indenyl fragment always binds to the metal centre with a hapticity intermediate between ƞ3 and ƞ5. A reactivity study carried out using piperidine as a nucleophilic agent proved that the indenyl moiety is the eligible site of attack rather than the isocyanide ligand or the metal centre. All complexes were tested as potential anticancer agents against three ovarian cancer cell lines (A2780, A2780cis, and OVCAR-5) and one breast cancer cell line (MDA-MB-231), displaying comparable activity with respect to cisplatin, which was used as a positive control. Moreover, the similar cytotoxicity observed towards A2780 and A2780cis cells (cisplatin-sensitive and cisplatin-resistant, respectively) suggests that our palladium derivatives presumably act with a mechanism of action different than that of the clinically approved platinum drugs. For comparison, we also synthesized Pd-ƞ3-allyl derivatives, which generally showed a slightly higher activity towards ovarian cancer cells and lower activity towards breast cancer cells with respect to their Pd-indenyl congeners.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Fosfinas , Humanos , Femenino , Cisplatino , Línea Celular Tumoral , Ligandos , Paladio , Espectroscopía Infrarroja por Transformada de Fourier , Cianuros
11.
Biomed Pharmacother ; 171: 116017, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38194739

RESUMEN

The clinical application of nanomaterials for chemodynamic therapy (CDT), which generate multiple reactive oxygen species (ROS), presents significant challenges. These challenges arise due to insufficient levels of endogenous hydrogen peroxide and catalytic ions necessary to initiate Fenton reactions. As a result, sophisticated additional delivery systems are required. In this study, a novel bimetallic copper (II) pentacyanonitrosylferrate (Cu(II)NP, Cu[Fe(CN) 5 NO]) material was developed to address these limitations. This material functions as a multiple ROS generator at tumoral sites by self-inducing hydrogen peroxide and producing peroxynitrite (ONOO-) species. The research findings demonstrate that this material exhibits low toxicity towards normal liver organoids, yet shows potent antitumoral effects on High Grade Serous Ovarian Cancer (HGSOC) organoid patients, regardless of platinum resistance. Significantly, this research introduces a promising therapeutic opportunity by proposing a single system capable of replacing the need for H2O2, additional catalysts, and NO-based delivery systems. This innovative system exhibits remarkable multiple therapeutic mechanisms, paving the way for potential advancements in clinical treatments.


Asunto(s)
Cobre , Neoplasias , Humanos , Peróxido de Hidrógeno , Nitroprusiato , Especies Reactivas de Oxígeno
12.
J Adv Res ; 56: 43-56, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36958586

RESUMEN

INTRODUCTION: Chemodynamic therapy (CDT) holds great promise in achieving cancer therapy through Fenton and Fenton-like reactions, which generate highly toxic reactive species. However, CDT is limited by the lower amount of catalyst ions that can decompose already existing intracellular H2O2 and produce reactive oxygen species (ROS) to attain a therapeutic outcome. OBJECTIVES: To overcome these limitations, a tailored approach, which utilizes dual metals cations (Ag+, Fe2+) based silver pentacyanonitrosylferrate or silver nitroprusside (AgNP) were developed for Fenton like reactions that can specifically kill cancer cells by taking advantage of tumor acidic environment without used of any external stimuli. METHODS: A simple solution mixing procedure was used to synthesize AgNP as CDT agent. AgNP were structurally and morphologically characterized, and it was observed that a minimal dose of AgNP is required to destroy cancer cells with limited effects on normal cells. Moreover, comprehensive in vitro studies were conducted to evaluate antitumoral mechanism. RESULTS: AgNP have an effective ability to decompose endogenous H2O2 in cells. The decomposed endogenous H2O2 generates several different types of reactive species (•OH, O2•-) including peroxynitrite (ONOO-) species as apoptotic inducers that kill cancer cells, specifically. Cellular internalization data demonstrated that in short time, AgNP enters in lysosomes, avoid degradation and due to the acidic pH of lysosomes significantly generate high ROS levels. These data are further confirmed by the activation of different oxidative genes. Additionally, we demonstrated the biocompatibility of AgNP on mouse liver and ovarian organoids as an ex vivo model while AgNP showed the therapeutic efficacy on patient derived tumor organoids (PDTO). CONCLUSION: This work demonstrates the therapeutic application of silver nitroprusside as a multiple ROS generator utilizing Fenton like reaction. Thereby, our study exhibits a potential application of CDT against HGSOC (High Grade Serous Ovarian Cancer), a deadly cancer through altering the redox homeostasis.


Asunto(s)
Neoplasias , Plata , Ratones , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Plata/química , Plata/farmacología , Plata/uso terapéutico , Nitroprusiato/farmacología , Nitroprusiato/uso terapéutico , Ácido Peroxinitroso/uso terapéutico , Peróxido de Hidrógeno/química , Neoplasias/tratamiento farmacológico
13.
Clin Exp Rheumatol ; 41(12): 2493-2501, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38149513

RESUMEN

OBJECTIVES: The aim of the study was to culture vital salivary gland organoids obtained through labial or parotid biopsy of primary Sjögren's syndrome (pSS) patients in order to evaluate their morphological and functional features in basal condition and after stimulation with Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) activator forskolin and phosphodiesterase 4 (PDE4) inhibitor apremilast, their in vitro regenerative capacity and the immune-histological resemblance with original tissue. METHODS: Salivary gland tissues from five pSS patients were processed to obtain vital organoids; swelling assay and cell proliferation tests were performed after forskolin and apremilast application. Immunochemistry evaluation on original salivary gland tissue and corresponding organoids was performed, and secretomics analysis was conducted to assess their functional status. REULTS: After application of forskolin and apremilast, we observed organoid swelling after 30 minutes, compatible with a positive functional status and enhancement of saliva production. In 3 cases, apremilast induced organoid proliferation. All cases were positive for cytokeratin 14 (CK14) and most for cytokeratin 5 (CK5). All the cases were positive for amylase; its secretion, and thus functional status of organoids, was confirmed by its high concentration in the culture medium. A focal ductal differentiation was found in some cases, highlighted by epithelial membrane antigen (EMA) positivity. The more differentiated EMA positive areas were negative for the staminal marker CK14, showing a sort of "complementary staining". CONCLUSIONS: Our data highlighted that differentiated cells and vital functional organoids that recapitulate the development of original salivary glands can be obtained from pSS epithelium. For the first time, the direct stimulating effect of PDE4 inhibitor apremilast on pSS human salivary gland organoids is reported, opening new perspectives on targeting oral dryness with drugs that combine secretagogue and immunomodulatory effects.


Asunto(s)
Inhibidores de Fosfodiesterasa 4 , Síndrome de Sjögren , Humanos , Inhibidores de Fosfodiesterasa 4/farmacología , Secretagogos , Colforsina , Glándulas Salivales , Organoides/metabolismo , Organoides/patología
14.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686157

RESUMEN

The aim of this study was to elucidate the chemistry of cellular degeneration in human neuroblastoma cells upon exposure to outer-membrane vesicles (OMVs) produced by Porphyromonas gingivalis (Pg) oral bacteria by monitoring their metabolomic evolution using in situ Raman spectroscopy. Pg-OMVs are a key factor in Alzheimer's disease (AD) pathogenesis, as they act as efficient vectors for the delivery of toxins promoting neuronal damage. However, the chemical mechanisms underlying the direct impact of Pg-OMVs on cell metabolites at the molecular scale still remain conspicuously unclear. A widely used in vitro model employing neuroblastoma SH-SY5Y cells (a sub-line of the SK-N-SH cell line) was spectroscopically analyzed in situ before and 6 h after Pg-OMV contamination. Concurrently, Raman characterizations were also performed on isolated Pg-OMVs, which included phosphorylated dihydroceramide (PDHC) lipids and lipopolysaccharide (LPS), the latter in turn being contaminated with a highly pathogenic class of cysteine proteases, a key factor in neuronal cell degradation. Raman characterizations located lipopolysaccharide fingerprints in the vesicle structure and unveiled so far unproved aspects of the chemistry behind protein degradation induced by Pg-OMV contamination of SH-SY5Y cells. The observed alterations of cells' Raman profiles were then discussed in view of key factors including the formation of amyloid ß (Aß) plaques and hyperphosphorylated Tau neurofibrillary tangles, and the formation of cholesterol agglomerates that exacerbate AD pathologies.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Porphyromonas gingivalis , Péptidos beta-Amiloides , Lipopolisacáridos , Cuerpos de Inclusión , Vesícula
15.
Front Bioeng Biotechnol ; 11: 1135374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143603

RESUMEN

High-grade serous ovarian cancer (HGSOC) needs new technologies for improving cancer diagnosis and therapy. It is a fatal disease with few options for the patients. In this context, dynamic culture systems coupling with patient-derived cancer 3D microstructures could offer a new opportunity for exploring novel therapeutic approaches. In this study, we optimized a passive microfluidic platform with 3D cancer organoids, which allows a standardized approach among different patients, a minimum requirement of samples, multiple interrogations of biological events, and a rapid response. The passive flow was optimized to improve the growth of cancer organoids, avoiding the disruption of the extracellular matrix (ECM). Under optimized conditions of the OrganoFlow (tilting angle of 15° and an interval of rocking every 8 min), the cancer organoids grow faster than when they are in static conditions and the number of dead cells is reduced over time. To calculate the IC 50 values of standard chemotherapeutic drugs (carboplatin, paclitaxel, and doxorubicin) and targeted drugs (ATRA), different approaches were utilized. Resazurin staining, ATP-based assay, and DAPI/PI colocalization assays were compared, and the IC 50 values were calculated. The results showed that in the passive flow, the IC 50 values are lower than in static conditions. FITC-labeled paclitaxel shows a better penetration of ECM under passive flow than in static conditions, and cancer organoids start to die after 48 h instead of 96 h, respectively. Cancer organoids are the last frontiers for ex vivo testing of drugs that replicate the response of patients in the clinic. For this study, organoids derived from ascites or tissues of patients with Ovarian Cancer have been used. In conclusion, it was possible to develop a protocol for organoid cultures in a passive microfluidic platform with a higher growth rate, faster drug response, and better penetration of drugs into ECM, maintaining the samples' vitals and collecting the data on the same plate for up to 16 drugs.

16.
Pharmaceutics ; 15(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37111734

RESUMEN

Hepatocellular carcinoma (HCC) remains a global health challenge, representing the third leading cause of cancer deaths worldwide. Although therapeutic advances have been made in the few last years, the prognosis remains poor. Thus, there is a dire need to develop novel therapeutic strategies. In this regard, two approaches can be considered: (1) the identification of tumor-targeted delivery systems and (2) the targeting of molecule(s) whose aberrant expression is confined to tumor cells. In this work, we focused on the second approach. Among the different kinds of possible target molecules, we discuss the potential therapeutic value of targeting non-coding RNAs (ncRNAs), which include micro interfering RNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These molecules represent the most significant RNA transcripts in cells and can regulate many HCC features, including proliferation, apoptosis, invasion and metastasis. In the first part of the review, the main characteristics of HCC and ncRNAs are described. The involvement of ncRNAs in HCC is then presented over five sections: (a) miRNAs, (b) lncRNAs, (c) circRNAs, (d) ncRNAs and drug resistance and (e) ncRNAs and liver fibrosis. Overall, this work provides the reader with the most recent state-of-the-art approaches in this field, highlighting key trends and opportunities for more advanced and efficacious HCC treatments.

17.
Semin Cancer Biol ; 91: 143-157, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871635

RESUMEN

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is a member of a family of peptidyl-prolyl isomerases that specifically recognizes and binds phosphoproteins, catalyzing the rapid cis-trans isomerization of phosphorylated serine/threonine-proline motifs, which leads to changes in the structures and activities of the targeted proteins. Through this complex mechanism, PIN1 regulates many hallmarks of cancer including cell autonomous metabolism and the crosstalk with the cellular microenvironment. Many studies showed that PIN1 is largely overexpressed in cancer turning on a set of oncogenes and abrogating the function of tumor suppressor genes. Among these targets, recent evidence demonstrated that PIN1 is involved in lipid and glucose metabolism and accordingly, in the Warburg effect, a characteristic of tumor cells. As an orchestra master, PIN1 finely tunes the signaling pathways allowing cancer cells to adapt and take advantage from a poorly organized tumor microenvironment. In this review, we highlight the trilogy among PIN1, the tumor microenvironment and the metabolic program rewiring.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Transducción de Señal , Fosforilación
18.
J Mater Chem B ; 11(14): 3124-3135, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36883303

RESUMEN

ChemoDynamic Therapy (CDT) is a powerful therapeutic modality using Fenton/Fenton-like reactions to produce oxidative stress for cancer treatment. However, the insufficient amount of catalyst ions and ROS scavenging activity of glutathione peroxidase (GPX4) limit the application of this approach. Therefore, a tailored strategy to regulate the Fenton reaction more efficiently (utilizing dual metal cations) and inhibit the GPX4 activity, is in great demand. Herein, a CDT system is based on dual (Fe2+ metals) iron pentacyanonitrosylferrate or iron nitroprusside (FeNP) having efficient ability to catalyze the reaction of endogenous H2O2 to form highly toxic ˙OH species in cells. Additionally, FeNP is involved in ferroptosis via GPX4 inhibition. In particular, FeNP was structurally characterized, and it is noted that a minimum dose of FeNP is required to kill cancer cells while a comparable dose shows negligible toxicity on normal cells. Detailed in vitro studies confirmed that FeNP participates in sustaining apoptosis, as determined using the annexin V marker. Cellular uptake results showed that in a short time period, FeNP enters lysosomes and, due to the acidic lysosomal pH, releases Fe2+ ions, which are involved in ROS generation (˙OH species). Western blot analyses confirmed the suppression of GPX4 activity over time. Importantly, FeNP has a therapeutic effect on ovarian cancer organoids derived from High-Grade Serous Ovarian Cancer (HGSOC). Furthermore, FeNP showed biocompatible nature towards normal mouse liver organoids and in vivo. This work presents the effective therapeutic application of FeNP as an efficient Fenton agent along with ferroptosis inducer activity to improve CDT, through disturbing redox homeostasis.


Asunto(s)
Ferroptosis , Neoplasias Ováricas , Animales , Ratones , Femenino , Humanos , Nitroprusiato , Hierro , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Neoplasias Ováricas/tratamiento farmacológico
19.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36297407

RESUMEN

Despite the progress made in the diagnoses and therapy of gastrointestinal cancers, these diseases are still plagued by a high mortality. Thus, novel therapeutic approaches are urgently required. In this regard, small interfering RNA (siRNA), double-stranded RNA molecules able to specifically target the mRNA of pathological genes, have the potential to be of therapeutic value. To be effective in the human body, siRNAs need to be protected against degradation. Additionally, they need to target the tumor, leaving the normal tissue untouched in an effort to preserve organ function. To accomplish these tasks, siRNAs have been formulated with smart delivery systems such has polymers and lipids. While siRNA protection is not particularly difficult to achieve, their targeting of tumor cells remains problematic. Here, after introducing the general features of gastrointestinal cancers, we describe siRNA characteristics together with representative delivery systems developed for gastrointestinal cancers. Afterward, we present a selection of research papers employing siRNAs against upper- and lower- gastrointestinal cancers. For the liver, we also consider papers using siRNAs to combat liver cirrhosis, a relevant risk factor for liver cancer development. Finally, we present a brief description of clinical trials employing siRNAs for gastrointestinal cancers.

20.
Bioelectrochemistry ; 148: 108269, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36179393

RESUMEN

Cytochrome c (Cyt c) is an important biomarker for the early stage of apoptosis that plays a role in the diagnosis and therapy of several diseases including cancer. Here, an electrochemical sensor based on molecularly imprinted polymer (MIP) for the ultrasensitive detection of Cyt c is studied. It is prepared by electropolymerization of o-phenylenediamine in the presence of Cyt c as template, followed by solvent extraction, resulting in the formation of Cyt c recognition sites. The MIP is characterised by cyclic voltammetry and differential pulse voltammetry, using ferrocenecarboxylic acid as redox probe. Voltammetric data indicates that the MIP-sensor behaves as an electrode with partially blocked surface. The partition isotherm obtained fits the Langmuir model, indicating a high affinity for Cyt c, with an association constant Ka = 5 × 10 11 M-1. DPV measurements allow to achieve extremely high analytical sensitivity and low detection limit, in the femtomolar range, with negligible unspecific adsorption. Satisfactory analytical recovery tests performed in the presence of possible interfering proteins and in diluted human serum confirmed the selectivity of the MIP-sensor as well as its potential applicability for real samples analysis.


Asunto(s)
Impresión Molecular , Citocromos c , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Límite de Detección , Impresión Molecular/métodos , Polímeros Impresos Molecularmente , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA