Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biol Reprod ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115371

RESUMEN

OBJECTIVE: Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the rhesus macaque (Macaca mulatta). INTERVENTION: We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus producing and modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. MAIN OUTCOME MEASURES: We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using qPCR. RESULTS: Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control, and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. CONCLUSION: Our study is the first to use an in vitro culture system to create an epithelial-cell specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways altered by sex-steroids in cervical mucus production.

2.
F S Sci ; 4(2): 163-171, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907435

RESUMEN

OBJECTIVE: To characterize ion channel expression and localization in the endocervix under different hormonal conditions using a nonhuman primate primary endocervical epithelial cell model. DESIGN: Experimental. SETTING: University-based, translational science laboratory. INTERVENTIONS: We cultured and treated conditionally reprogrammed primary rhesus macaque endocervix cells with estradiol and progesterone and measured gene expression changes for several known ion channel and ion channel regulators of mucus secreting epithelia. Using both rhesus macaque endocervical samples and human samples, we localized channels in the endocervix using immunohistochemistry. MAIN OUTCOME MEASURES: The relative abundance of transcripts was evaluated using real-time polymerase chain reaction. Immunostaining results were evaluated qualitatively. RESULTS: Compared with controls, we found that estradiol increased gene expression for ANO6, NKCC1, CLCA1, and PDE4D. Progesterone down-regulated gene expression for ANO6, SCNN1A, SCNN1B, NKCC1, and PDE4D (P≤.05). Immunohistochemistry confirmed endocervical cell membrane localization of ANO1, ANO6, KCNN4, LRR8CA, and NKCC1. CONCLUSIONS: We found several ion channels and ion channel regulators that are hormonally sensitive in the endocervix. These channels, therefore, may play a role in the cyclic fertility changes in the endocervix and could be further investigated as targets for future fertility and contraceptive studies.


Asunto(s)
Cuello del Útero , Progesterona , Animales , Femenino , Humanos , Cuello del Útero/metabolismo , Macaca mulatta/metabolismo , Canales Iónicos/metabolismo , Estradiol/farmacología , Fibrosis
3.
JVS Vasc Sci ; 3: 316-335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439699

RESUMEN

Objective: Fatal allergic responses and cardiac arrhythmias have been reported with the intravenous (IV) administration of polidocanol. We sought to identify the physiologic mechanism of systemic cardiovascular response after transcervical (TC) and IV administration of polidocanol. Methods: We continuously monitored blood pressure (BP) and heart rate using an arterial line during IV and intraperitoneal (IP) administration of polidocanol solution (PS) and polidocanol doxycycline solution in female rats and TC and IP administration of polidocanol foam (PF) and PDF (TC only) in female baboons. We performed TC procedures using a catheter with (pressurized) and without (nonpressurized) balloon inflation. Baboons also underwent monitoring during IV PS administration with and without pretreatment with antihistamines. We performed cardiac echo and electrocardiograms during selected experiments. We defined a refractory hypotension as a sustained decrease of more than 30% from baseline that prevented delivery of the target dose. Results: We found a dose-related increase in the proportion of baboons that developed refractory hypotension during TC administration of 5% PDF and PF, an effect confined to pressurized administration. The infusion of 0.5% PS in rats induced a rapid and dramatic refractory hypotension. The inclusion of doxycycline did not improve or deteriorate these outcomes, and doxycycline solution or saline (control) alone did not affect BP. All five female baboons that received up to 20 mL of 1% PS (200 mg) developed refractory hypotension. Pretreatment with diphenhydramine, ranitidine, or both did not block the refractory hypotension induced by IV administration of 1% PS (100 mg). In contrast, only one of the six female baboons treated with IP PF 400 mg developed a decrease of more than 30% in BP, and this response was not sustained. Cardiac echocardiography done in four baboons during TC treatment demonstrated a decrease in cardiac output as the physiologic mechanism of hypotension. We did not observe important changes on the electrocardiograms. Conclusions: Adverse cardiovascular effects of polidocanol treatment occur owing to a direct myocardial effect of polidocanol and not as a result of a hypersensitivity reaction. Pressurized TC administration of PF results in refractory hypotension owing to endometrial vascular uptake of polidocanol and not as a result of uptake from peritoneal surfaces.

4.
Biol Reprod ; 107(3): 732-740, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35532160

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is an apical membrane chloride/bicarbonate ion channel in epithelial cells. Mutations in CFTR cause cystic fibrosis, a disease characterized by thickened mucus secretions and is associated with subfertility and infertility. CFTR function has been well characterized in vitro and in vivo in airway and other epithelia studies. However, little is known about CFTR function in the cervix in health and its contribution to cyclic regulation of fertility from endocervical mucus changes. Contributing to this research gap is the lack of information on the effect of sex steroid hormones on CFTR expression in cervical epithelial cells across the menstrual cycle. Herein, we demonstrate the hormonal regulation of CFTR expression in endocervical cells both in vitro and in vivo, and that conditionally reprogrammed endocervical epithelial cells can be used to interrogate CFTR ion channel function. CFTR activity was demonstrated in vitro using electrophysiological methods and functionally inhibited by the CFTR-specific inhibitors inh-172 and GlyH-101. We also report that CFTR expression is increased by estradiol in the macaque cervix both in vitro and in vivo in Rhesus macaques treated with artificial menstrual cycles. Estrogen upregulation of CFTR is blocked in vivo by cotreatment with progesterone. Our findings provide the most comprehensive evidence to date that steroid hormones drive changes in CFTR expression. These data are integral to understanding the role of CFTR as a fertility regulator in the endocervix.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Animales , Cuello del Útero/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/terapia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Femenino , Macaca mulatta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA