Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Nat Commun ; 15(1): 3711, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697966

RESUMEN

The LAT1-4F2hc complex (SLC7A5-SLC3A2) facilitates uptake of essential amino acids, hormones and drugs. Its dysfunction is associated with many cancers and immune/neurological disorders. Here, we apply native mass spectrometry (MS)-based approaches to provide evidence of super-dimer formation (LAT1-4F2hc)2. When combined with lipidomics, and site-directed mutagenesis, we discover four endogenous phosphatidylethanolamine (PE) molecules at the interface and C-terminus of both LAT1 subunits. We find that interfacial PE binding is regulated by 4F2hc-R183 and is critical for regulation of palmitoylation on neighbouring LAT1-C187. Combining native MS with mass photometry (MP), we reveal that super-dimerization is sensitive to pH, and modulated by complex N-glycans on the 4F2hc subunit. We further validate the dynamic assemblies of LAT1-4F2hc on plasma membrane and in the lysosome. Together our results link PTM and lipid binding with regulation and localisation of the LAT1-4F2hc super-dimer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Cadena Pesada de la Proteína-1 Reguladora de Fusión , Transportador de Aminoácidos Neutros Grandes 1 , Lipoilación , Proteínas de la Membrana , Fosfatidiletanolaminas , Humanos , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Fosfatidiletanolaminas/metabolismo , Lisosomas/metabolismo , Membrana Celular/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Células HEK293 , Multimerización de Proteína , Unión Proteica , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , Concentración de Iones de Hidrógeno
2.
Nature ; 630(8016): 437-446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599239

RESUMEN

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)1-10. Here we report that GSDMD Cys191 is S-palmitoylated and that palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.


Asunto(s)
Gasderminas , Lipoilación , Proteínas de Unión a Fosfato , Especies Reactivas de Oxígeno , Animales , Femenino , Humanos , Masculino , Ratones , Aciltransferasas/metabolismo , Microscopía por Crioelectrón , Cisteína/metabolismo , Gasderminas/química , Gasderminas/metabolismo , Inflamasomas/metabolismo , Liposomas/metabolismo , Liposomas/química , Mitocondrias/metabolismo , Proteínas de Unión a Fosfato/química , Proteínas de Unión a Fosfato/metabolismo , Piroptosis , Especies Reactivas de Oxígeno/metabolismo , Células THP-1
3.
Nat Microbiol ; 9(6): 1566-1578, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649411

RESUMEN

The cyclic-oligonucleotide-based anti-phage signalling system (CBASS) is a type of innate prokaryotic immune system. Composed of a cyclic GMP-AMP synthase (cGAS) and CBASS-associated proteins, CBASS uses cyclic oligonucleotides to activate antiviral immunity. One major class of CBASS contains a homologue of eukaryotic ubiquitin-conjugating enzymes, which is either an E1-E2 fusion or a single E2. However, the functions of single E2s in CBASS remain elusive. Here, using biochemical, genetic, cryo-electron microscopy and mass spectrometry investigations, we discover that the E2 enzyme from Serratia marcescens regulates cGAS by imitating the ubiquitination cascade. This includes the processing of the cGAS C terminus, conjugation of cGAS to a cysteine residue, ligation of cGAS to a lysine residue, cleavage of the isopeptide bond and poly-cGASylation. The poly-cGASylation activates cGAS to produce cGAMP, which acts as an antiviral signal and leads to cell death. Thus, our findings reveal a unique regulatory role of E2 in CBASS.


Asunto(s)
Nucleotidiltransferasas , Enzimas Ubiquitina-Conjugadoras , Ubiquitinación , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/química , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/química , Transducción de Señal , Nucleótidos Cíclicos/metabolismo , Bacteriófagos/genética , Bacteriófagos/enzimología , Ubiquitina/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Humanos , Microscopía por Crioelectrón , Inmunidad Innata
4.
Sci Adv ; 10(7): eadl4628, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354247

RESUMEN

Native mass spectrometry (MS) has become widely accepted in structural biology, providing information on stoichiometry, interactions, homogeneity, and shape of protein complexes. Yet, the fundamental assumption that proteins inside the mass spectrometer retain a structure faithful to native proteins in solution remains a matter of intense debate. Here, we reveal the gas-phase structure of ß-galactosidase using single-particle cryo-electron microscopy (cryo-EM) down to 2.6-Å resolution, enabled by soft landing of mass-selected protein complexes onto cold transmission electron microscopy (TEM) grids followed by in situ ice coating. We find that large parts of the secondary and tertiary structure are retained from the solution. Dehydration-driven subunit reorientation leads to consistent compaction in the gas phase. By providing a direct link between high-resolution imaging and the capability to handle and select protein complexes that behave problematically in conventional sample preparation, the approach has the potential to expand the scope of both native mass spectrometry and cryo-EM.


Asunto(s)
Proteínas , Manejo de Especímenes , Microscopía por Crioelectrón/métodos , Proteínas/química , Espectrometría de Masas/métodos , beta-Galactosidasa , Manejo de Especímenes/métodos
5.
Proc Natl Acad Sci U S A ; 120(16): e2300137120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036998

RESUMEN

Heme-containing integral membrane proteins are at the heart of many bioenergetic complexes and electron transport chains. The importance of these electron relay hubs across biology has inspired the design of de novo proteins that recreate their core features within robust, versatile, and tractable protein folds. To this end, we report here the computational design and in-cell production of a minimal diheme membrane cytochrome which successfully integrates into the cellular membrane of live bacteria. This synthetic construct emulates a four-helix bundle found in modern respiratory complexes but has no sequence homology to any polypeptide sequence found in nature. The two b-type hemes, which appear to be recruited from the endogenous heme pool, have distinct split redox potentials with values close to those of natural membrane-spanning cytochromes. The purified protein can engage in rapid biomimetic electron transport with small molecules, with other redox proteins, and with biologically relevant diffusive electron carriers. We thus report an artificial membrane metalloprotein with the potential to serve as a functional electron transfer module in both synthetic protocells and living systems.


Asunto(s)
Citocromos , Metaloproteínas , Citocromos/metabolismo , Oxidación-Reducción , Transporte de Electrón , Metaloproteínas/metabolismo , Hemo/metabolismo
6.
Nat Commun ; 14(1): 1545, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941262

RESUMEN

The main protease from SARS-CoV-2 (Mpro) is responsible for cleavage of the viral polyprotein. Mpro self-processing is called maturation, and it is crucial for enzyme dimerization and activity. Here we use C145S Mpro to study the structure and dynamics of N-terminal cleavage in solution. Native mass spectroscopy analysis shows that mixed oligomeric states are composed of cleaved and uncleaved particles, indicating that N-terminal processing is not critical for dimerization. A 3.5 Å cryo-EM structure provides details of Mpro N-terminal cleavage outside the constrains of crystal environment. We show that different classes of inhibitors shift the balance between oligomeric states. While non-covalent inhibitor MAT-POS-e194df51-1 prevents dimerization, the covalent inhibitor nirmatrelvir induces the conversion of monomers into dimers, even with intact N-termini. Our data indicates that the Mpro dimerization is triggered by induced fit due to covalent linkage during substrate processing rather than the N-terminal processing.


Asunto(s)
Proteasas 3C de Coronavirus , SARS-CoV-2 , Antivirales , Inhibidores de Proteasas/farmacología , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/química
7.
Cell ; 185(21): 3931-3949.e26, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36240740

RESUMEN

Neural migration is a critical step during brain development that requires the interactions of cell-surface guidance receptors. Cancer cells often hijack these mechanisms to disseminate. Here, we reveal crystal structures of Uncoordinated-5 receptor D (Unc5D) in complex with morphogen receptor glypican-3 (GPC3), forming an octameric glycoprotein complex. In the complex, four Unc5D molecules pack into an antiparallel bundle, flanked by four GPC3 molecules. Central glycan-glycan interactions are formed by N-linked glycans emanating from GPC3 (N241 in human) and C-mannosylated tryptophans of the Unc5D thrombospondin-like domains. MD simulations, mass spectrometry and structure-based mutants validate the crystallographic data. Anti-GPC3 nanobodies enhance or weaken Unc5-GPC3 binding and, together with mutant proteins, show that Unc5/GPC3 guide migrating pyramidal neurons in the mouse cortex, and cancer cells in an embryonic xenograft neuroblastoma model. The results demonstrate a conserved structural mechanism of cell guidance, where finely balanced Unc5-GPC3 interactions regulate cell migration.


Asunto(s)
Movimiento Celular , Glipicanos/química , Receptores de Netrina/química , Animales , Glipicanos/metabolismo , Humanos , Ratones , Proteínas Mutantes , Receptores de Netrina/metabolismo , Receptores de Superficie Celular/metabolismo , Anticuerpos de Dominio Único , Trombospondinas
8.
Angew Chem Int Ed Engl ; 61(49): e202213170, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36260431

RESUMEN

Oligomerization and glycosylation modulate therapeutic glycoprotein stability and efficacy. The interplay between these two critical attributes on therapeutic glycoproteins, is however often hard to define. Here, we present a native top-down mass spectrometry (MS) approach to assess the glycosylation status of therapeutic cytokine and hormone assemblies and relate interfacial glycan occupancy to complex stability. We found that interfacial O-glycan stabilizes tumor necrosis factor-α trimer. On the contrary, interferon-ß1a dimerization is independent of glycosylation. Moreover, we discovered a unique distribution of N-glycans on the follicle-stimulating hormone α subunit. We found that the interfacial N-glycan, at Asn52 of the α subunit, interacts extensively with the ß subunit to regulate the dimer assembly. Overall, we have exemplified a method to link glycosylation with assembly status, for cytokines and hormones, critical for informing optimal stability and bioavailability.


Asunto(s)
Citocinas , Polisacáridos , Glicosilación , Polisacáridos/química , Espectrometría de Masas/métodos , Glicoproteínas/química
9.
Proc Natl Acad Sci U S A ; 119(35): e2203742119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994636

RESUMEN

Vacuolar-type adenosine triphosphatases (V-ATPases) not only function as rotary proton pumps in cellular organelles but also serve as signaling hubs. To identify the endogenous binding partners of V-ATPase, we collected a large dataset of human V-ATPases and did extensive classification and focused refinement of human V-ATPases. Unexpectedly, about 17% of particles in state 2 of human V-ATPases display additional density with an overall resolution of 3.3 Å. Structural analysis combined with artificial intelligence modeling enables us to identify this additional density as mEAK-7, a protein involved in mechanistic target of rapamycin (mTOR) signaling in mammals. Our structure shows that mEAK-7 interacts with subunits A, B, D, and E of V-ATPases in state 2. Thus, we propose that mEAK-7 may regulate V-ATPase function through binding to V-ATPases in state 2 as well as mediate mTOR signaling.


Asunto(s)
Microscopía por Crioelectrón , Minería de Datos , ATPasas de Translocación de Protón Vacuolares , Animales , Inteligencia Artificial , Microscopía por Crioelectrón/métodos , Minería de Datos/métodos , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Unión Proteica/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo
10.
Nucleic Acids Res ; 50(15): 8719-8732, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35947691

RESUMEN

Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.


Asunto(s)
Adenosina Trifosfatasas , Ensamble de Virus , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/química , Ensamble de Virus/genética , Proteínas Virales/genética , Proteínas Virales/química , Empaquetamiento del ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/química , ADN Viral/genética , ADN Viral/química
11.
Curr Opin Struct Biol ; 74: 102351, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35313141

RESUMEN

Protein glycosylation is critical since it connects complex metabolic pathways to diverse proteoforms, fine-tunes protein structures and exerts biological functions. Aberrant glycosylation on the other hand is associated with many diseases, including cancers, inflammation and metabolic disorders. By resolving monosaccharide residues on intact glycoprotein complexes, native mass spectrometry can shed light on glycan heterogeneity, glycoprotein structure and molecular recognition. Here, we focus on the two most prevalent forms of glycosylation, namely N- and O- linked, and discuss recent progress in native mass spectrometry for elucidating glycoprotein structural heterogeneity and relating specific glycan repertoires to glycoprotein interactions.


Asunto(s)
Glicoproteínas , Polisacáridos , Glicoproteínas/química , Glicosilación , Espectrometría de Masas/métodos , Polisacáridos/metabolismo
12.
FEBS J ; 289(13): 3770-3788, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35066976

RESUMEN

The bacterial heterodimeric ATP-binding cassette (ABC) multidrug exporter PatAB has a critical role in conferring antibiotic resistance in multidrug-resistant infections by Streptococcus pneumoniae. As with other heterodimeric ABC exporters, PatAB contains two transmembrane domains that form a drug translocation pathway for efflux and two nucleotide-binding domains that bind ATP, one of which is hydrolysed during transport. The structural and functional elements in heterodimeric ABC multidrug exporters that determine interactions with drugs and couple drug binding to nucleotide hydrolysis are not fully understood. Here, we used mass spectrometry techniques to determine the subunit stoichiometry in PatAB in our lactococcal expression system and investigate locations of drug binding using the fluorescent drug-mimetic azido-ethidium. Surprisingly, our analyses of azido-ethidium-labelled PatAB peptides point to ethidium binding in the PatA nucleotide-binding domain, with the azido moiety crosslinked to residue Q521 in the H-like loop of the degenerate nucleotide-binding site. Investigation into this compound and residue's role in nucleotide hydrolysis pointed to a reduction in the activity for a Q521A mutant and ethidium-dependent inhibition in both mutant and wild type. Most transported drugs did not stimulate or inhibit nucleotide hydrolysis of PatAB in detergent solution or lipidic nanodiscs. However, further examples for ethidium-like inhibition were found with propidium, novobiocin and coumermycin A1, which all inhibit nucleotide hydrolysis by a non-competitive mechanism. These data cast light on potential mechanisms by which drugs can regulate nucleotide hydrolysis by PatAB, which might involve a novel drug binding site near the nucleotide-binding domains.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Streptococcus pneumoniae , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfato/metabolismo , Etidio/metabolismo , Hidrólisis , Nucleótidos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
13.
Science ; 375(6576): 86-91, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34793198

RESUMEN

GPR158 is an orphan G protein­coupled receptor (GPCR) highly expressed in the brain, where it controls synapse formation and function. GPR158 has also been implicated in depression, carcinogenesis, and cognition. However, the structural organization and signaling mechanisms of GPR158 are largely unknown. We used single-particle cryo­electron microscopy (cryo-EM) to determine the structures of human GPR158 alone and bound to an RGS signaling complex. The structures reveal a homodimeric organization stabilized by a pair of phospholipids and the presence of an extracellular Cache domain, an unusual ligand-binding domain in GPCRs. We further demonstrate the structural basis of GPR158 coupling to RGS7-Gß5. Together, these results provide insights into the unusual biology of orphan receptors and the formation of GPCR-RGS complexes.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/química , Proteínas RGS/química , Receptores Acoplados a Proteínas G/química , Sitios de Unión , Microscopía por Crioelectrón , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Humanos , Ligandos , Modelos Moleculares , Fosfolípidos/química , Unión Proteica , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
14.
Angew Chem Weinheim Bergstr Ger ; 134(49): e202213170, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38504999

RESUMEN

Oligomerization and glycosylation modulate therapeutic glycoprotein stability and efficacy. The interplay between these two critical attributes on therapeutic glycoproteins, is however often hard to define. Here, we present a native top-down mass spectrometry (MS) approach to assess the glycosylation status of therapeutic cytokine and hormone assemblies and relate interfacial glycan occupancy to complex stability. We found that interfacial O-glycan stabilizes tumor necrosis factor-α trimer. On the contrary, interferon-ß1a dimerization is independent of glycosylation. Moreover, we discovered a unique distribution of N-glycans on the follicle-stimulating hormone α subunit. We found that the interfacial N-glycan, at Asn52 of the α subunit, interacts extensively with the ß subunit to regulate the dimer assembly. Overall, we have exemplified a method to link glycosylation with assembly status, for cytokines and hormones, critical for informing optimal stability and bioavailability.

15.
Nat Commun ; 12(1): 6721, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795302

RESUMEN

Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Represoras/metabolismo , Proteína Transportadora de Acilo/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/genética , Cromosomas Bacterianos/genética , Activación Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutación , Unión Proteica , Proteínas Represoras/genética
16.
Chem Commun (Camb) ; 57(82): 10747-10750, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34585198

RESUMEN

We developed a native mass spectrometry-based approach to quantify the monomer-dimer equilibrium of the LPS transport protein LptH. We use this method to assess the potency and efficacy of an antimicrobial peptide and small molecule disruptors, obtaining new information on their structure-activity relationships. This approach led to the identification of quinoline-based hit compounds representing the basis for the development of novel LPS transport inhibitors.


Asunto(s)
Antiinfecciosos/química , Receptores de Lipopolisacáridos/química , Péptidos/química , Quinolinas/química , Bibliotecas de Moléculas Pequeñas/química , Antiinfecciosos/farmacología , Cristalización , Ensayos Analíticos de Alto Rendimiento , Humanos , Espectrometría de Masas/métodos , Oxazinas/química , Péptidos/farmacología , Unión Proteica , Multimerización de Proteína , Quinolinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
17.
mBio ; 12(5): e0178721, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34544275

RESUMEN

Colicins are protein antibiotics deployed by Escherichia coli to eliminate competing strains. Colicins frequently exploit outer membrane (OM) nutrient transporters to penetrate the selectively permeable bacterial cell envelope. Here, by applying live-cell fluorescence imaging, we were able to monitor the entry of the pore-forming toxin colicin B (ColB) into E. coli and localize it within the periplasm. We further demonstrate that single-stranded DNA coupled to ColB can also be transported to the periplasm, emphasizing that the import routes of colicins can be exploited to carry large cargo molecules into bacteria. Moreover, we characterize the molecular mechanism of ColB association with its OM receptor FepA by applying a combination of photoactivated cross-linking, mass spectrometry, and structural modeling. We demonstrate that complex formation is coincident with large-scale conformational changes in the colicin. Thereafter, active transport of ColB through FepA involves the colicin taking the place of the N-terminal half of the plug domain that normally occludes this iron transporter. IMPORTANCE Decades of excessive use of readily available antibiotics has generated a global problem of antibiotic resistance and, hence, an urgent need for novel antibiotic solutions. Bacteriocins are protein-based antibiotics produced by bacteria to eliminate closely related competing bacterial strains. Bacteriocin toxins have evolved to bypass the complex cell envelope in order to kill bacterial cells. Here, we uncover the cellular penetration mechanism of a well-known but poorly understood bacteriocin called colicin B that is active against Escherichia coli. Moreover, we demonstrate that the colicin B-import pathway can be exploited to deliver conjugated DNA cargo into bacterial cells. Our work leads to a better understanding of the way bacteriocins, as potential alternative antibiotics, execute their mode of action as well as highlighting how they might even be exploited in the genomic manipulation of Gram-negative bacteria.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico/efectos de los fármacos , Proteínas Portadoras/metabolismo , Colicinas/farmacología , ADN/metabolismo , Hierro/metabolismo , Receptores de Superficie Celular/metabolismo , Antibacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Bacteriocinas/genética , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Colicinas/química , Colicinas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Proteínas Periplasmáticas/metabolismo , Conformación Proteica , Transporte de Proteínas , Receptores de Superficie Celular/genética
18.
Sci Adv ; 7(34)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34417180

RESUMEN

Isopenicillin N synthase (IPNS) catalyzes the unique reaction of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) with dioxygen giving isopenicillin N (IPN), the precursor of all natural penicillins and cephalosporins. X-ray free-electron laser studies including time-resolved crystallography and emission spectroscopy reveal how reaction of IPNS:Fe(II):ACV with dioxygen to yield an Fe(III) superoxide causes differences in active site volume and unexpected conformational changes that propagate to structurally remote regions. Combined with solution studies, the results reveal the importance of protein dynamics in regulating intermediate conformations during conversion of ACV to IPN. The results have implications for catalysis by multiple IPNS-related oxygenases, including those involved in the human hypoxic response, and highlight the power of serial femtosecond crystallography to provide insight into long-range enzyme dynamics during reactions presently impossible for nonprotein catalysts.


Asunto(s)
Electrones , Oxidorreductasas , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Compuestos Férricos , Humanos , Rayos Láser , Oxidorreductasas/química , Oxígeno/química , Penicilinas/química , Penicilinas/metabolismo , Especificidad por Sustrato
19.
Nature ; 592(7854): 469-473, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33762731

RESUMEN

Serotonin, or 5-hydroxytryptamine (5-HT), is an important neurotransmitter1,2 that activates the largest subtype family of G-protein-coupled receptors3. Drugs that target 5-HT1A, 5-HT1D, 5-HT1E and other 5-HT receptors are used to treat numerous disorders4. 5-HT receptors have high levels of basal activity and are subject to regulation by lipids, but the structural basis for the lipid regulation and basal activation of these receptors and the pan-agonism of 5-HT remains unclear. Here we report five structures of 5-HT receptor-G-protein complexes: 5-HT1A in the apo state, bound to 5-HT or bound to the antipsychotic drug aripiprazole; 5-HT1D bound to 5-HT; and 5-HT1E in complex with a 5-HT1E- and 5-HT1F-selective agonist, BRL-54443. Notably, the phospholipid phosphatidylinositol 4-phosphate is present at the G-protein-5-HT1A interface, and is able to increase 5-HT1A-mediated G-protein activity. The receptor transmembrane domain is surrounded by cholesterol molecules-particularly in the case of 5-HT1A, in which cholesterol molecules are directly involved in shaping the ligand-binding pocket that determines the specificity for aripiprazol. Within the ligand-binding pocket of apo-5-HT1A are structured water molecules that mimic 5-HT to activate the receptor. Together, our results address a long-standing question of how lipids and water molecules regulate G-protein-coupled receptors, reveal how 5-HT acts as a pan-agonist, and identify the determinants of drug recognition in 5-HT receptors.


Asunto(s)
Microscopía por Crioelectrón , Ligandos , Lípidos , Receptores de Serotonina 5-HT1/metabolismo , Receptores de Serotonina 5-HT1/ultraestructura , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Aripiprazol/metabolismo , Aripiprazol/farmacología , Sitios de Unión , Colesterol/farmacología , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/ultraestructura , Humanos , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/farmacología , Receptor de Serotonina 5-HT1A/química , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT1A/ultraestructura , Receptores de Serotonina 5-HT1/química , Agonistas del Receptor de Serotonina 5-HT1/química , Agonistas del Receptor de Serotonina 5-HT1/metabolismo , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Agua/química
20.
J Am Chem Soc ; 143(11): 4085-4089, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33711230

RESUMEN

The use of mass spectrometry to investigate proteins is now well established and provides invaluable information for both soluble and membrane protein assemblies. Maintaining transient noncovalent interactions under physiological conditions, however, remains challenging. Here, using nanoscale electrospray ionization emitters, we establish conditions that enable mass spectrometry of two G protein-coupled receptors (GPCR) from buffers containing high concentrations of sodium ions. For the Class A GPCR, the adenosine 2A receptor, we observe ligand-induced changes to sodium binding of the receptor at the level of individual sodium ions. We find that antagonists promote sodium binding while agonists attenuate sodium binding. These findings are in line with high-resolution X-ray crystallography wherein only inactive conformations retain sodium ions in allosteric binding pockets. For the glucagon receptor (a Class B GPCR) we observed enhanced ligand binding in electrospray buffers containing high concentrations of sodium, as opposed to ammonium acetate buffers. A combination of native and -omics mass spectrometry revealed the presence of a lipophilic negative allosteric modulator. These experiments highlight the advantages of implementing native mass spectrometry, from electrospray buffers containing high concentrations of physiologically relevant salts, to inform on allosteric ions or ligands with the potential to define their roles on GPCR function.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Sodio/química , Humanos , Iones/química , Ligandos , Espectrometría de Masas , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA