Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cancer Immunol Res ; 12(5): 592-613, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38393969

RESUMEN

Solid tumors are dense three-dimensional (3D) multicellular structures that enable efficient receptor-ligand trans interactions via close cell-cell contact. Immunoglobulin-like transcript (ILT)2 and ILT4 are related immune-suppressive receptors that play a role in the inhibition of myeloid cells within the tumor microenvironment. The relative contribution of ILT2 and ILT4 to immune inhibition in the context of solid tumor tissue has not been fully explored. We present evidence that both ILT2 and ILT4 contribute to myeloid inhibition. We found that although ILT2 inhibits myeloid cell activation in the context of trans-engagement by MHC-I, ILT4 efficiently inhibits myeloid cells in the presence of either cis- or trans-engagement. In a 3D spheroid tumor model, dual ILT2/ILT4 blockade was required for the optimal activation of myeloid cells, including the secretion of CXCL9 and CCL5, upregulation of CD86 on dendritic cells, and downregulation of CD163 on macrophages. Humanized mouse tumor models showed increased immune activation and cytolytic T-cell activity with combined ILT2 and ILT4 blockade, including evidence of the generation of immune niches, which have been shown to correlate with clinical response to immune-checkpoint blockade. In a human tumor explant histoculture system, dual ILT2/ILT4 blockade increased CXCL9 secretion, downregulated CD163 expression, and increased the expression of M1 macrophage, IFNγ, and cytolytic T-cell gene signatures. Thus, we have revealed distinct contributions of ILT2 and ILT4 to myeloid cell biology and provide proof-of-concept data supporting the combined blockade of ILT2 and ILT4 to therapeutically induce optimal myeloid cell reprogramming in the tumor microenvironment.


Asunto(s)
Antígenos CD , Receptor Leucocitario Tipo Inmunoglobulina B1 , Glicoproteínas de Membrana , Células Mieloides , Receptores Inmunológicos , Microambiente Tumoral , Receptores Inmunológicos/metabolismo , Animales , Humanos , Ratones , Microambiente Tumoral/inmunología , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo
2.
Oncotarget ; 10(68): 7220-7237, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31921384

RESUMEN

The synthetic oligonucleotide SD-101 is a potent and specific agonist for toll-like receptor 9. Intratumoral injection of SD-101 induces significant anti-tumor immunity in preclinical and clinical studies, especially when combined with PD-1 blockade. To build upon this strategy, we studied the enhancement of SD-101 activities by combination with low-dose cyclophosphamide, a well-characterized agent with potentially complementary activities. In multiple mouse tumor models, we demonstrate substantial anti-tumor activity of the combination, compared to each single agent. Combination therapy generated CD8+ T cell dependent immunity leading to rejection of both non-injected and injected tumors and long-term survival, even in very large tumors. Mechanistic studies encompassing global gene expression changes and characterization of immune cell infiltrates show the rapid, sequential induction of innate and adaptive responses and identify discrete contributions of SD-101 and cyclophosphamide. Importantly, these changes were prominent in tumors not injected directly with SD-101. Combination treatment resulted in creation of a permissive environment for a systemic anti-tumor immune response, including a reduction of intratumoral regulatory T cells (Tregs) and an increase in "M1" versus "M2" tumor-associated macrophage (TAM) phenotypes. Additionally, we observed increased immunogenic cell death as well as antigen processing in response to combination treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA