Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Adv ; 10(13): eadk5386, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536927

RESUMEN

While pancreatic ductal adenocarcinomas (PDACs) are addicted to KRAS-activating mutations, inhibitors of downstream KRAS effectors, such as the MEK1/2 kinase inhibitor trametinib, are devoid of therapeutic effects. However, the extensive rewiring of regulatory circuits driven by the attenuation of the KRAS pathway may induce vulnerabilities of therapeutic relevance. An in-depth molecular analysis of the transcriptional and epigenomic alterations occurring in PDAC cells in the initial hours after MEK1/2 inhibition by trametinib unveiled the induction of endogenous retroviruses (ERVs) escaping epigenetic silencing, leading to the production of double-stranded RNAs and the increased expression of interferon (IFN) genes. We tracked ERV activation to the early induction of the transcription factor ELF3, which extensively bound and activated nonsilenced retroelements and synergized with IRF1 (interferon regulatory factor 1) in the activation of IFNs and IFN-stimulated genes. Trametinib-induced viral mimicry in PDAC may be exploited in the rational design of combination therapies in immuno-oncology.


Asunto(s)
Carcinoma Ductal Pancreático , Retrovirus Endógenos , Neoplasias Pancreáticas , Humanos , Retrovirus Endógenos/genética , Transducción de Señal , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo
2.
Cancer Cell ; 42(4): 662-681.e10, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38518775

RESUMEN

Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming. Ex vivo and in vitro evidence supports the occurrence of dynamic transitions among these variants in part influenced by extracellular matrix composition and stiffness and associated with local, specifically neural, invasion.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Membrana Basal/metabolismo , Sistema Nervioso
3.
Sci Signal ; 16(816): eade0326, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38113337

RESUMEN

Innate immune responses to coronavirus infections are highly cell specific. Tissue-resident macrophages, which are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients but are inconsistently infected in vitro, exert critical but conflicting effects by secreting both antiviral type I interferons (IFNs) and tissue-damaging inflammatory cytokines. Steroids, the only class of host-targeting drugs approved for the treatment of coronavirus disease 2019 (COVID-19), indiscriminately suppress both responses, possibly impairing viral clearance. Here, we established in vitro cell culture systems that enabled us to separately investigate the cell-intrinsic and cell-extrinsic proinflammatory and antiviral activities of mouse macrophages infected with the prototypical murine coronavirus MHV-A59. We showed that the nuclear factor κB-dependent inflammatory response to viral infection was selectively inhibited by loss of the lysine demethylase LSD1, which was previously implicated in innate immune responses to cancer, with negligible effects on the antiviral IFN response. LSD1 ablation also enhanced an IFN-independent antiviral response, blocking viral egress through the lysosomal pathway. The macrophage-intrinsic antiviral and anti-inflammatory activity of Lsd1 inhibition was confirmed in vitro and in a humanized mouse model of SARS-CoV-2 infection. These results suggest that LSD1 controls innate immune responses against coronaviruses at multiple levels and provide a mechanistic rationale for potentially repurposing LSD1 inhibitors for COVID-19 treatment.


Asunto(s)
COVID-19 , Lisina , Animales , Humanos , Ratones , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Citocinas/metabolismo , SARS-CoV-2/metabolismo
4.
EMBO Mol Med ; 15(6): e16910, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37158102

RESUMEN

MYC is a key oncogenic driver in multiple tumor types, but concomitantly endows cancer cells with a series of vulnerabilities that provide opportunities for targeted pharmacological intervention. For example, drugs that suppress mitochondrial respiration selectively kill MYC-overexpressing cells. Here, we unravel the mechanistic basis for this synthetic lethal interaction and exploit it to improve the anticancer effects of the respiratory complex I inhibitor IACS-010759. In a B-lymphoid cell line, ectopic MYC activity and treatment with IACS-010759 added up to induce oxidative stress, with consequent depletion of reduced glutathione and lethal disruption of redox homeostasis. This effect could be enhanced either with inhibitors of NADPH production through the pentose phosphate pathway, or with ascorbate (vitamin C), known to act as a pro-oxidant at high doses. In these conditions, ascorbate synergized with IACS-010759 to kill MYC-overexpressing cells in vitro and reinforced its therapeutic action against human B-cell lymphoma xenografts. Hence, complex I inhibition and high-dose ascorbate might improve the outcome of patients affected by high-grade lymphomas and potentially other MYC-driven cancers.


Asunto(s)
Linfoma de Células B , Linfoma , Humanos , Línea Celular Tumoral , Linfoma/tratamiento farmacológico , Linfoma/metabolismo , Linfoma/patología , Linfoma de Células B/tratamiento farmacológico , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-myc/metabolismo
5.
Cell Metab ; 35(4): 633-650.e9, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898381

RESUMEN

The metabolic state represents a major hurdle for an effective adoptive T cell therapy (ACT). Indeed, specific lipids can harm CD8+ T cell (CTL) mitochondrial integrity, leading to defective antitumor responses. However, the extent to which lipids can affect the CTL functions and fate remains unexplored. Here, we show that linoleic acid (LA) is a major positive regulator of CTL activity by improving metabolic fitness, preventing exhaustion, and stimulating a memory-like phenotype with superior effector functions. We report that LA treatment enhances the formation of ER-mitochondria contacts (MERC), which in turn promotes calcium (Ca2+) signaling, mitochondrial energetics, and CTL effector functions. As a direct consequence, the antitumor potency of LA-instructed CD8 T cells is superior in vitro and in vivo. We thus propose LA treatment as an ACT potentiator in tumor therapy.


Asunto(s)
Linfocitos T CD8-positivos , Ácido Linoleico , Ácido Linoleico/metabolismo , Transducción de Señal
6.
Mol Oncol ; 16(5): 1132-1152, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34632715

RESUMEN

Multiple molecular features, such as activation of specific oncogenes (e.g., MYC, BCL2) or a variety of gene expression signatures, have been associated with disease course in diffuse large B-cell lymphoma (DLBCL), although their relationships and implications for targeted therapy remain to be fully unraveled. We report that MYC activity is closely correlated with-and most likely a driver of-gene signatures related to oxidative phosphorylation (OxPhos) in DLBCL, pointing to OxPhos enzymes, in particular mitochondrial electron transport chain (ETC) complexes, as possible therapeutic targets in high-grade MYC-associated lymphomas. In our experiments, indeed, MYC sensitized B cells to the ETC complex I inhibitor IACS-010759. Mechanistically, IACS-010759 triggered the integrated stress response (ISR) pathway, driven by the transcription factors ATF4 and CHOP, which engaged the intrinsic apoptosis pathway and lowered the apoptotic threshold in MYC-overexpressing cells. In line with these findings, the BCL2-inhibitory compound venetoclax synergized with IACS-010759 against double-hit lymphoma (DHL), a high-grade malignancy with concurrent activation of MYC and BCL2. In BCL2-negative lymphoma cells, instead, killing by IACS-010759 was potentiated by the Mcl-1 inhibitor S63845. Thus, combining an OxPhos inhibitor with select BH3-mimetic drugs provides a novel therapeutic principle against aggressive, MYC-associated DLBCL variants.


Asunto(s)
Linfoma de Células B Grandes Difuso , Proteínas Proto-Oncogénicas c-myc , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Oncogenes , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Respiración
7.
Neurooncol Adv ; 3(1): vdab076, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377986

RESUMEN

BACKGROUND: The radio- and chemo-resistance of glioblastoma stem-like cells (GSCs), together with their innate tumor-initiating aptitude, make this cell population a crucial target for effective therapies. However, targeting GSCs is hardly difficult and complex, due to the presence of the blood-brain barrier (BBB) and the infiltrative nature of GSCs arousing their dispersion within the brain parenchyma. METHODS: Liposomes (LIPs), surface-decorated with an Apolipoprotein E-modified peptide (mApoE) to enable BBB crossing, were loaded with doxorubicin (DOXO), as paradigm of cytotoxic drug triggering immunogenic cell death (ICD). Patient-derived xenografts (PDXs) obtained by GSC intracranial injection were treated with mApoE-DOXO-LIPs alone or concomitantly with radiation. RESULTS: Our results indicated that mApoE, through the engagement of the low-density lipoprotein receptor (LDLR), promotes mApoE-DOXO-LIPs transcytosis across the BBB and confers target specificity towards GSCs. Irradiation enhanced LDLR expression on both BBB and GSCs, thus further promoting LIP diffusion and specificity. When administered in combination with radiations, mApoE-DOXO-LIPs caused a significant reduction of in vivo tumor growth due to GSC apoptosis. GSC apoptosis prompted microglia/macrophage phagocytic activity, together with the activation of the antigen-presenting machinery crucially required for anti-tumor adaptive immune response. CONCLUSIONS: Our results advocate for radiotherapy and adjuvant administration of drug-loaded, mApoE-targeted nanovectors as an effective strategy to deliver cytotoxic molecules to GSCs at the surgical tumor margins, the forefront of glioblastoma (GBM) recurrence, circumventing BBB hurdles. DOXO encapsulation proved in situ immune response activation within GBM microenvironment.

8.
Mol Cell ; 81(17): 3526-3541.e8, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34186021

RESUMEN

BAP1 is mutated or deleted in many cancer types, including mesothelioma, uveal melanoma, and cholangiocarcinoma. It is the catalytic subunit of the PR-DUB complex, which removes PRC1-mediated H2AK119ub1, essential for maintaining transcriptional repression. However, the precise relationship between BAP1 and Polycombs remains elusive. Using embryonic stem cells, we show that BAP1 restricts H2AK119ub1 deposition to Polycomb target sites. This increases the stability of Polycomb with their targets and prevents diffuse accumulation of H2AK119ub1 and H3K27me3. Loss of BAP1 results in a broad increase in H2AK119ub1 levels that is primarily dependent on PCGF3/5-PRC1 complexes. This titrates PRC2 away from its targets and stimulates H3K27me3 accumulation across the genome, leading to a general chromatin compaction. This provides evidence for a unifying model that resolves the apparent contradiction between BAP1 catalytic activity and its role in vivo, uncovering molecular vulnerabilities that could be useful for BAP1-related pathologies.


Asunto(s)
Cromatina/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Línea Celular/metabolismo , Cromatina/genética , Cromatina/fisiología , Células Madre Embrionarias/metabolismo , Heterocromatina , Histonas/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/fisiología , Ubiquitinación
9.
J Exp Med ; 217(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32491160

RESUMEN

CD8+ T cells are master effectors of antitumor immunity, and their presence at tumor sites correlates with favorable outcomes. However, metabolic constraints imposed by the tumor microenvironment (TME) can dampen their ability to control tumor progression. We describe lipid accumulation in the TME areas of pancreatic ductal adenocarcinoma (PDA) populated by CD8+ T cells infiltrating both murine and human tumors. In this lipid-rich but otherwise nutrient-poor TME, access to using lipid metabolism becomes particularly valuable for sustaining cell functions. Here, we found that intrapancreatic CD8+ T cells progressively accumulate specific long-chain fatty acids (LCFAs), which, rather than provide a fuel source, impair their mitochondrial function and trigger major transcriptional reprogramming of pathways involved in lipid metabolism, with the subsequent reduction of fatty acid catabolism. In particular, intrapancreatic CD8+ T cells specifically exhibit down-regulation of the very-long-chain acyl-CoA dehydrogenase (VLCAD) enzyme, which exacerbates accumulation of LCFAs and very-long-chain fatty acids (VLCFAs) that mediate lipotoxicity. Metabolic reprogramming of tumor-specific T cells through enforced expression of ACADVL enabled enhanced intratumoral T cell survival and persistence in an engineered mouse model of PDA, overcoming one of the major hurdles to immunotherapy for PDA.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Ácidos Grasos/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Acil-CoA Deshidrogenasa de Cadena Larga/biosíntesis , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Animales , Linfocitos T CD8-positivos/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Regulación hacia Abajo , Ácidos Grasos/genética , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ratones Mutantes , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología
10.
J Nanobiotechnology ; 14: 18, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26955876

RESUMEN

BACKGROUND: Thanks to mechanotransductive components cells are competent to perceive nanoscale topographical features of their environment and to convert the immanent information into corresponding physiological responses. Due to its complex configuration, unraveling the role of the extracellular matrix is particularly challenging. Cell substrates with simplified topographical cues, fabricated by top-down micro- and nanofabrication approaches, have been useful in order to identify basic principles. However, the underlying molecular mechanisms of this conversion remain only partially understood. RESULTS: Here we present the results of a broad, systematic and quantitative approach aimed at understanding how the surface nanoscale information is converted into cell response providing a profound causal link between mechanotransductive events, proceeding from the cell/nanostructure interface to the nucleus. We produced nanostructured ZrO2 substrates with disordered yet controlled topographic features by the bottom-up technique supersonic cluster beam deposition, i.e. the assembling of zirconia nanoparticles from the gas phase on a flat substrate through a supersonic expansion. We used PC12 cells, a well-established model in the context of neuronal differentiation. We found that the cell/nanotopography interaction enforces a nanoscopic architecture of the adhesion regions that affects the focal adhesion dynamics and the cytoskeletal organization, which thereby modulates the general biomechanical properties by decreasing the rigidity of the cell. The mechanotransduction impacts furthermore on transcription factors relevant for neuronal differentiation (e.g. CREB), and eventually the protein expression profile. Detailed proteomic data validated the observed differentiation. In particular, the abundance of proteins that are involved in adhesome and/or cytoskeletal organization is striking, and their up- or downregulation is in line with their demonstrated functions in neuronal differentiation processes. CONCLUSION: Our work provides a deep insight into the molecular mechanotransductive mechanisms that realize the conversion of the nanoscale topographical information of SCBD-fabricated surfaces into cellular responses, in this case neuronal differentiation. The results lay a profound cell biological foundation indicating the strong potential of these surfaces in promoting neuronal differentiation events which could be exploited for the development of prospective research and/or biomedical applications. These applications could be e.g. tools to study mechanotransductive processes, improved neural interfaces and circuits, or cell culture devices supporting neurogenic processes.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanoestructuras/administración & dosificación , Circonio/administración & dosificación , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Células PC12 , Ratas , Propiedades de Superficie/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
11.
ACS Nano ; 10(2): 2509-20, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26745323

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive form of glioma, with life expectancy of around 2 years after diagnosis, due to recidivism and to the blood-brain barrier (BBB) limiting the amount of drugs which reach the residual malignant cells, thus contributing to the failure of chemotherapies. To bypass the obstacles imposed by the BBB, we investigated the use of nanotechnologies combined with radiotherapy, as a potential therapeutic strategy for GBM. We used poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PNP) conjugated to chlorotoxin (CTX), a peptide reported to bind selectively to glioma cells. Silver nanoparticles were entrapped inside the functionalized nanoparticles (Ag-PNP-CTX), to allow detection and quantification of the cellular uptake by confocal microscopy, both in vitro and in vivo. In vitro experiments performed with different human glioblastoma cell lines showed higher cytoplasmic uptake of Ag-PNP-CTX, with respect to nonfunctionalized nanoparticles. In vivo experiments showed that Ag-NP-CTX efficiently targets the tumor, but are scarcely effective in crossing the blood brain barrier in the healthy brain, where dispersed metastatic cells are present. We show here that single whole brain X-ray irradiation, performed 20 h before nanoparticle injection, enhances the expression of the CTX targets, MMP-2 and ClC-3, and, through BBB permeabilization, potently increases the amount of internalized Ag-PNP-CTX even in dispersed cells, and generated an efficient antitumor synergistic effect able to inhibit in vivo tumor growth. Notably, the application of Ag-PNP-CTX to irradiated tumor cells decreases the extracellular activity of MMP-2. By targeting dispersed GBM cells and reducing MMP-2 activity, the combined use of CTX-nanovectors with radiotherapy may represent a promising therapeutic approach toward GBM.


Asunto(s)
Neoplasias Encefálicas/terapia , Quimioradioterapia/métodos , Glioblastoma/terapia , Nanopartículas del Metal/química , Venenos de Escorpión/uso terapéutico , Animales , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Canales de Cloruro/metabolismo , Glioblastoma/patología , Humanos , Ácido Láctico/química , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Metástasis de la Neoplasia , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Unión Proteica , Venenos de Escorpión/administración & dosificación , Venenos de Escorpión/farmacocinética , Plata/química , Microambiente Tumoral , Terapia por Rayos X
12.
Hum Mol Genet ; 24(22): 6530-9, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26358776

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG repeat in the IT15 gene that encodes the protein huntingtin (htt). Evidence shows that mutant htt causes mitochondrial depolarization and fragmentation, but the underlying molecular mechanism has yet to be clarified. Bax/Bak and BNip3 are pro-apoptotic members of the Bcl-2 family protein whose activation triggers mitochondrial depolarization and fragmentation inducing cell death. Evidence suggests that Bax/Bak and BNip3 undergo activation upon mutant htt expression but whether these proteins are required for mitochondrial depolarization and fragmentation induced by mutant htt is unclear. Our results show that BNip3 knock-out cells are protected from mitochondrial damage and cell death induced by mutant htt whereas Bax/Bak knock-out cells are not. Moreover, deletion of BNip3 C-terminal transmembrane domain, required for mitochondrial targeting, suppresses mitochondrial depolarization and fragmentation in a cell culture model of HD. Hence, our results suggest that changes in mitochondrial morphology and transmembrane potential, induced by mutant htt protein, are dependent and linked to BNip3 and not to Bax/Bak activation. These results provide new compelling evidence that underlies the molecular mechanisms by which mutant htt causes mitochondrial dysfunction and cell death, suggesting BNip3 as a potential target for HD therapy.


Asunto(s)
Enfermedad de Huntington/genética , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Células Cultivadas , Técnicas de Sustitución del Gen , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas/genética , Proteína X Asociada a bcl-2/genética
13.
PLoS One ; 9(10): e108826, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25295618

RESUMEN

To optimise the efficiency of cell machinery, cells can use the same protein (often called a hub protein) to participate in different cell functions by simply changing its target molecules. There are large data sets describing protein-protein interactions ("interactome") but they frequently fail to consider the functional significance of the interactions themselves. We studied the interaction between two potential hub proteins, ICln and 4.1R (in the form of its two splicing variants 4.1R80 and 4.1R135), which are involved in such crucial cell functions as proliferation, RNA processing, cytoskeleton organisation and volume regulation. The sub-cellular localisation and role of native and chimeric 4.1R over-expressed proteins in human embryonic kidney (HEK) 293 cells were examined. ICln interacts with both 4.1R80 and 4.1R135 and its over-expression displaces 4.1R from the membrane regions, thus affecting 4.1R interaction with ß-actin. It was found that 4.1R80 and 4.1R135 are differently involved in regulating the swelling activated anion current (ICl,swell) upon hypotonic shock, a condition under which both isoforms are dislocated from the membrane region and thus contribute to ICl,swell current regulation. Both 4.1R isoforms are also differently involved in regulating cell morphology, and ICln counteracts their effects. The findings of this study confirm that 4.1R plays a role in cell volume regulation and cell morphology and indicate that ICln is a new negative regulator of 4.1R functions.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas ELAV/metabolismo , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Línea Celular , Citoesqueleto/metabolismo , Proteína 2 Similar a ELAV , Células HEK293 , Humanos , Unión Proteica
14.
Mol Plant ; 6(4): 1109-30, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23770840

RESUMEN

Polarized organization of the cytoplasm of growing pollen tubes is maintained by coordinated function of actin filaments (AFs) and microtubules (MTs). AFs convey post-Golgi secretory vesicles to the tip where some fuse with specific domains of the plasma membrane (PM). Secretory activity is balanced by PM retrieval that maintains cell membrane economy and regulates the polarized composition of the PM, by dividing lipids/proteins between the shank and the tip. Although AFs play a key role in PM internalization in the shank, the role of MTs in exo-endocytosis needs to be characterized. The present results show that integrity of the MT cytoskeleton is necessary to control exo-endocytosis events in the tip. MT polymerization plays a role in promoting PM invagination in the apex of tobacco pollen tubes since nocodazole affected PM internalization in the tip and subsequent migration of endocytic vesicles from the apex for degradation. MT depolymerization in the apex and shank was associated with misallocation of a significantly greater amount of internalized PM to the Golgi apparatus and its early recycling to the secretory pathway. Fluorescence Recovery After Photobleaching (FRAP) experiments also showed that MT depolymerization in the tip region influenced the rate of exocytosis in the central domain of the apical PM.


Asunto(s)
Endocitosis , Endosomas/metabolismo , Exocitosis , Microtúbulos/metabolismo , Nicotiana/citología , Tubo Polínico/citología , Polimerizacion , Transporte Biológico/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Oro/química , Oro/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Nanopartículas del Metal , Microtúbulos/efectos de los fármacos , Nocodazol/farmacología , Tubo Polínico/anatomía & histología , Tubo Polínico/efectos de los fármacos , Tubo Polínico/metabolismo , Polimerizacion/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
15.
Cereb Cortex ; 23(3): 531-41, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22402347

RESUMEN

Activation of protein kinase A (PKA) pathway at presynaptic terminals plays a crucial role in the supply of synaptic vesicles (SVs) from the reserve pool, affecting the steady-state level of activity and the reconstitution of the readily releasable pool after intense stimulation. However, the identity of the stimuli activating this pathway is undefined. Using fluorescence resonance energy transfer and molecular genetic, we show that kainate, through the activation of presynaptic kainate receptors, induces PKA activation and enhances synapsin I phosphorylation at PKA-specific residues. This leads to a dispersion of synapsin I immunoreactivity, which is accompanied by a PKA-dependent increase in the rate of SV recycling at the growth cone and by an enhanced miniature excitatory postsynaptic currents frequency in mature networks. Selective activation of this pathway is induced by the native neurotransmitter glutamate, when applied in the high nanomolar range. These data identify glutamate, specifically acting on KARs, as one of the stimuli able to induce phosphorylation of synapsin at PKA sites, both at the axonal growth cone and at the mature synapse, thus increasing SV availability and contributing to plasticity phenomena.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Conos de Crecimiento/fisiología , Plasticidad Neuronal/fisiología , Receptores de Ácido Kaínico/metabolismo , Vesículas Sinápticas/fisiología , Animales , Células Cultivadas , Activación Enzimática/fisiología , Agonistas de Aminoácidos Excitadores/metabolismo , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Transferencia Resonante de Energía de Fluorescencia , Ácido Glutámico/metabolismo , Hipocampo/fisiología , Inmunohistoquímica , Ácido Kaínico/metabolismo , Ácido Kaínico/farmacología , Neuronas/fisiología , Técnicas de Placa-Clamp , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Sinapsinas/metabolismo
16.
PLoS One ; 7(12): e52014, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284854

RESUMEN

The CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) activity and localization are influenced by the cytoskeleton, in particular by actin and its polymerization state. In this study we investigated whether the expression of the hypertensive mutations of α-adducin (G460W-S586C in humans, F316Y in rats), an actin capping protein, led to a functional modification of CFTR activity and surface expression. The experiments were performed on HEK293 T cells cotransfected with CFTR and the human wild type (WT) or G460W mutated α-adducin. In whole-cell patch-clamp experiments, both the CFTR chloride current and the slope of current activation after forskolin addition were significantly higher in HEK cells overexpressing the G460W adducin. A higher plasma membrane density of active CFTR channels was confirmed by cell-attached patch-clamp experiments, both in HEK cells and in cultured primary DCT cells, isolated from MHS (Milan Hypertensive Strain, a Wistar rat (Rattus norvegicus) hypertensive model carrying the F316Y adducin mutation), compared to MNS (Milan Normotensive Strain) rats. Western blot experiments demonstrated an increase of the plasma membrane CFTR protein expression, with a modification of the channel glycosylation state, in the presence of the mutated adducin. A higher retention of CFTR protein in the plasma membrane was confirmed both by FRAP (Fluorescence Recovery After Photobleaching) and photoactivation experiments. The present data indicate that in HEK cells and in isolated DCT cells the presence of the G460W-S586C hypertensive variant of adducin increases CFTR channel activity, possibly by altering its membrane turnover and inducing a retention of the channel in the plasmamembrane. Since CFTR is known to modulate the activity of many others transport systems, the increased surface expression of the channel could have consequences on the whole network of transport in kidney cells.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Túbulos Renales Distales/metabolismo , Mutación , Animales , Membrana Celular/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Expresión Génica , Células HEK293 , Humanos , Masculino , Técnicas de Placa-Clamp , Unión Proteica , Ratas , Transducción de Señal
17.
J Neurochem ; 115(1): 247-58, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20649848

RESUMEN

Dysfunction of the microtubule (MT) system is an emerging theme in the pathogenesis of Parkinson's disease. This study was designed to investigate the putative role of MT dysfunction in dopaminergic neuron death induced by the neurotoxin 1-methyl-4-phenylpiridinium (MPP(+)). In nerve growth factor-differentiated PC12 cells, we have analyzed post-translational modifications of tubulin known to be associated with differently dynamic MTs and show that MPP(+) causes a selective loss of dynamic MTs and a concomitant enrichment of stable MTs. Through a direct live cell imaging approach, we show a significant reduction of MT dynamics following exposure to MPP(+) and a reorientation of MTs. Furthermore, these alterations precede the impairment of intracellular transport as revealed by changes in mitochondria movements along neurites and their accumulation into varicosities. We have also analyzed activation of caspase 3 and mitochondrial injury, well-known alterations induced by MPP(+), and found that they are noticeable only when MT dysfunction is already established. These data provide the first evidence that axonal transport impairment and mitochondrial damage might be a consequence of MT dysfunction in MPP(+) -induced neurodegeneration, lending support to the concept that alterations of MT organization and dynamics could play a pivotal role in neuronal death in Parkinson's disease.


Asunto(s)
Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Microtúbulos/metabolismo , Microtúbulos/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Adenosina Trifosfato/metabolismo , Animales , Transporte Axonal/efectos de los fármacos , Transporte Biológico Activo , Western Blotting , Caspasa 3/metabolismo , Inhibidores de Caspasas , Muerte Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Técnica del Anticuerpo Fluorescente , Potenciales de la Membrana/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Células PC12 , Fotoblanqueo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas
18.
J Cell Sci ; 120(Pt 21): 3804-19, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17940063

RESUMEN

In an attempt to dissect endocytosis in Nicotiana tabacum L. pollen tubes, two different probes--positively or negatively charged nanogold--were employed. The destiny of internalized plasma membrane domains, carrying negatively or positively charged residues, was followed at the ultrastructural level and revealed distinct endocytic pathways. Time-course experiments and electron microscopy showed internalization of subapical plasma-membrane domains that were mainly recycled to the secretory pathway through the Golgi apparatus and a second mainly degradative pathway involving plasma membrane retrieval at the tip. In vivo time-lapse experiments using FM4-64 combined with quantitative analysis confirmed the existence of distinct internalization regions. Ikarugamycin, an inhibitor of clathrin-dependent endocytosis, allowed us to further dissect the endocytic process: electron microscopy and time-lapse studies suggested that clathrin-dependent endocytosis occurs in the tip and subapical regions, because recycling of positively charged nanogold to the Golgi bodies and the consignment of negatively charged nanogold to vacuoles were affected. However, intact positively charged-nanogold transport to vacuoles supports the idea that an endocytic pathway that does not require clathrin is also present in pollen tubes.


Asunto(s)
Endocitosis/fisiología , Oro , Nanosferas , Nicotiana , Tubo Polínico/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Cadenas Pesadas de Clatrina/metabolismo , Colorantes Fluorescentes/metabolismo , Oro/química , Oro/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Lactamas/metabolismo , Nanosferas/química , Tubo Polínico/metabolismo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Nicotiana/citología , Nicotiana/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructura
19.
FEBS Lett ; 559(1-3): 45-50, 2004 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-14960305

RESUMEN

Anion channels in human mesothelial and mesothelioma cell lines were characterized by patch-clamp and biomolecular approaches. We found an outwardly rectifying anionic current which was inactivated at positive voltages and inhibited by extracellular adenosine 5'-triphosphate (ATP). Mesothelial and mesothelioma cells behaved differently concerning current inactivation properties. Inactivation is more pronounced and has a steeper onset in mesothelial cells. Different reversal potentials, in asymmetrical Cl(-) solutions, that could be attributed to a different selectivity of the channel, have been observed in the two cell lines. Mesothelioma cell single-channel analysis indicates that the number of the same active anion channel (3-4 pS) increased under hypoosmotic conditions. Immunocytochemistry experiments showed the presence of ICln protein in the cytosol and in the plasma membrane. Western blot analysis revealed an increase of ICln in the membrane under hypotonic conditions, an event possibly related to the activation of Cl(-) channels.


Asunto(s)
Canales de Cloruro/fisiología , Canales Iónicos/análisis , Mesotelioma/patología , Adenosina Trifosfato/farmacología , Línea Celular Tumoral , Membrana Celular/química , Canales de Cloruro/metabolismo , Citosol/química , Células Epiteliales/metabolismo , Humanos , Inmunohistoquímica , Canales Iónicos/fisiología , Mesotelioma/metabolismo , Presión Osmótica , Técnicas de Placa-Clamp , Derrame Pleural/patología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA