Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomed Pharmacother ; 165: 115216, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544282

RESUMEN

BACKGROUND: Liver fibrosis is a global health problem, and studying its development provides important information to address its treatment. Here, we characterized the effects of an adenosine compound (IFC-305) on preventing fibrosis and liver inflammation. METHODS: We studied the impact of IFC-305 on a carbon tetrachloride-induced liver fibrosis model in Wistar male rats at 4, 6, and 8 weeks. The effects were characterized by liver tissue histology, macrophages identification by flow cytometry with CD163+/CD11b/c+ antibodies, hepatic and plasmatic cytokine levels employing MILLIPLEX MAP and ELISA, Col1a1 and Il6 gene expression by RTqPCR, lipoperoxidation by TBARS reaction, and reactive oxygen species using 2'-7'dichlorofluorescin diacetate. RESULTS: CCl4-induced liver fibrosis and inflammation were significantly reduced in rats treated with IFC-305 at 6 and 8 weeks. In addition, we observed diminished expression of Col1a1; a decrease in the inflammatory cytokines IL-1ß, IL-6, MCP-1, TNF-α, and IL-4 a; reduction in inflammatory macrophages; inhibition of lipoperoxidation; and ROS production in Kupffer cells. CONCLUSION: This study showed that IFC-305 can inhibit liver fibrosis establishment by regulating the immune response during CCl4-induced damage. The immunomodulatory action of IFC-305 supports its use as a potential therapeutic strategy for preventing liver fibrosis.


Asunto(s)
Inflamación , Hígado , Ratas , Masculino , Animales , Ratas Wistar , Fibrosis , Inflamación/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/prevención & control , Citocinas/metabolismo , Tetracloruro de Carbono/toxicidad , Adenosina
2.
Sci Rep ; 11(1): 8769, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888767

RESUMEN

Chronic hypoxia is a major contributor to Chronic Kidney Disease (CKD) after Acute Kidney Injury (AKI). However, the temporal relation between the acute insult and maladaptive renal response to hypoxia remains unclear. In this study, we analyzed the time-course of renal hemodynamics, oxidative stress, inflammation, and fibrosis, as well as epigenetic modifications, with focus on HIF1α/VEGF signaling, in the AKI to CKD transition. Sham-operated, right nephrectomy (UNx), and UNx plus renal ischemia (IR + UNx) groups of rats were included and studied at 1, 2, 3, or 4 months. The IR + UNx group developed CKD characterized by progressive proteinuria, renal dysfunction, tubular proliferation, and fibrosis. At first month post-ischemia, there was a twofold significant increase in oxidative stress and reduction in global DNA methylation that was maintained throughout the study. Hif1α and Vegfa expression were depressed in the first and second-months post-ischemia, and then Hif1α but not Vegfa expression was recovered. Interestingly, hypermethylation of the Vegfa promoter gene at the HIF1α binding site was found, since early stages of the CKD progression. Our findings suggest that renal hypoperfusion, inefficient hypoxic response, increased oxidative stress, DNA hypomethylation, and, Vegfa promoter gene hypermethylation at HIF1α binding site, are early determinants of AKI-to-CKD transition.


Asunto(s)
Metilación de ADN , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/irrigación sanguínea , Regiones Promotoras Genéticas , Insuficiencia Renal Crónica/patología , Factor A de Crecimiento Endotelial Vascular/genética , Lesión Renal Aguda/patología , Animales , Progresión de la Enfermedad , Isquemia/patología , Masculino , Estrés Oxidativo , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
3.
Sci Rep ; 11(1): 8032, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850190

RESUMEN

Mammalian cytosine DNA methylation (5mC) is associated with the integrity of the genome and the transcriptional status of nuclear DNA. Due to technical limitations, it has been less clear if mitochondrial DNA (mtDNA) is methylated and whether 5mC has a regulatory role in this context. Here, we used bisulfite-independent single-molecule sequencing of native human and mouse DNA to study mitochondrial 5mC across different biological conditions. We first validated the ability of long-read nanopore sequencing to detect 5mC in CpG (5mCpG) and non-CpG (5mCpH) context in nuclear DNA at expected genomic locations (i.e. promoters, gene bodies, enhancers, and cell type-specific transcription factor binding sites). Next, using high coverage nanopore sequencing we found low levels of mtDNA CpG and CpH methylation (with several exceptions) and little variation across biological processes: differentiation, oxidative stress, and cancer. 5mCpG and 5mCpH were overall higher in tissues compared to cell lines, with small additional variation between cell lines of different origin. Despite general low levels, global and single-base differences were found in cancer tissues compared to their adjacent counterparts, in particular for 5mCpG. In conclusion, nanopore sequencing is a useful tool for the detection of modified DNA bases on mitochondria that avoid the biases introduced by bisulfite and PCR amplification. Enhanced nanopore basecalling models will provide further resolution on the small size effects detected here, as well as rule out the presence of other DNA modifications such as oxidized forms of 5mC.


Asunto(s)
Islas de CpG , Metilación de ADN , Mitocondrias , Animales , Citosina , ADN Mitocondrial , Ratones , Secuenciación de Nanoporos , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
4.
Sci Rep ; 10(1): 7822, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385352

RESUMEN

A basic question linked to differential patterns of gene expression is how cells reach different fates despite using the same DNA template. Since 5-hydroxymethylcytosine (5hmC) emerged as an intermediate metabolite in active DNA demethylation, there have been increasing efforts to elucidate its function as a stable modification of the genome, including a role in establishing such tissue-specific patterns of expression. Recently we described TET1-mediated enrichment of 5hmC on the promoter region of the master regulator of hepatocyte identity, HNF4A, which precedes differentiation of liver adult progenitor cells in vitro. Here, we studied the genome-wide distribution of 5hmC at early in vitro differentiation of human hepatocyte-like cells. We found a global increase in 5hmC as well as a drop in 5-methylcytosine after one week of in vitro differentiation from bipotent progenitors, at a time when the liver transcript program is already established. 5hmC was overall higher at the bodies of overexpressed genes. Furthermore, by modifying the metabolic environment, an adenosine derivative prevents 5hmC enrichment and impairs the acquisition of hepatic identity markers. These results suggest that 5hmC could be a marker of cell identity, as well as a useful biomarker in conditions associated with cell de-differentiation such as liver malignancies.


Asunto(s)
5-Metilcitosina/análogos & derivados , Diferenciación Celular/genética , Metilación de ADN/genética , Factor Nuclear 4 del Hepatocito/genética , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética , 5-Metilcitosina/metabolismo , Desmetilación del ADN , Regulación del Desarrollo de la Expresión Génica/genética , Genoma/genética , Hepatocitos/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , Células Madre/metabolismo
5.
J Cell Biochem ; 119(1): 401-413, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28590037

RESUMEN

The pathological characteristic of cirrhosis is scarring which results in a structurally distorted and dysfunctional liver. Previously, we demonstrated that Col1a1 and Pparg genes are deregulated in CCl4 -induced cirrhosis but their normal expression levels are recovered upon treatment with IFC-305, an adenosine derivative. We observed that adenosine was able to modulate S-adenosylmethionine-dependent trans-methylation reactions, and recently, we found that IFC-305 modulates HDAC3 expression. Here, we investigated whether epigenetic mechanisms, involving DNA methylation processes and histone acetylation, could explain the re-establishment of gene expression mediated by IFC-305 in cirrhosis. Therefore, Wistar rats were CCl4 treated and a sub-group received IFC-305 to reverse fibrosis. Global changes in DNA methylation, 5-hydroxymethylation, and histone H4 acetylation were observed after treatment with IFC-305. In particular, during cirrhosis, the Pparg gene promoter is depleted of histone H4 acetylation, whereas IFC-305 administration restores normal histone acetylation levels which correlates with an increase of Pparg transcript and protein levels. In contrast, the promoter of Col1a1 gene is hypomethylated during cirrhosis but gains DNA methylation upon treatment with IFC-305 which correlates with a reduction of Col1a1 transcript and protein levels. Our results suggest a model in which cirrhosis results in a general loss of permissive chromatin histone marks which triggers the repression of the Pparg gene and the upregulation of the Col1a1 gene. Treatment with IFC-305 restores epigenetic modifications globally and specifically at the promoters of Pparg and Col1a1 genes. These results reveal one of the mechanisms of action of IFC-305 and suggest a possible therapeutic function in cirrhosis. J. Cell. Biochem. 119: 401-413, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Adenosina/análogos & derivados , Intoxicación por Tetracloruro de Carbono/tratamiento farmacológico , Epigénesis Genética/efectos de los fármacos , Cirrosis Hepática Experimental/tratamiento farmacológico , Adenosina/farmacología , Animales , Intoxicación por Tetracloruro de Carbono/genética , Intoxicación por Tetracloruro de Carbono/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Ratas , Ratas Wistar
6.
J Pharmacol Exp Ther ; 361(2): 292-302, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28209723

RESUMEN

Background: Mitochondrion is an important metabolic and energetic organelle that regulates several cellular processes. Mitochondrial dysfunction has been related to liver diseases including hepatocellular carcinoma. As a result, the energetic demand is not properly supplied and mitochondrial morphologic changes have been observed, resulting in an altered metabolism. We previously demonstrated the chemopreventive effect of the hepatoprotector IFC-305. Aim: In this work we aimed to evaluate the functional, metabolic, and dynamic mitochondrial alterations in the sequential model of cirrhosis-hepatocellular carcinoma induced by diethylnitrosamine in rats and the possible beneficial effect of IFC-305. Methods: Experimental groups of rats were formed to induce cirrhosis-hepatocellular carcinoma and to assess the IFC-305 effect during cancer development and progression through the evaluation of functional, metabolic, and dynamic mitochondrial parameters. Results: In this experimental model, dysfunctional mitochondria were observed and suspension of the diethylnitrosamine treatment was not enough to restore them. Administration of IFC-305 maintained and restored the mitochondrial function and regulated parameters implicated in metabolism as well as the mitochondrial dynamics modified by diethylnitrosamine intoxication. Conclusion: This study supports IFC-305 as a potential hepatocellular carcinoma treatment or as an adjuvant in chemotherapy.


Asunto(s)
Adenosina/análogos & derivados , Anticarcinógenos/uso terapéutico , Carcinoma Hepatocelular/prevención & control , Cirrosis Hepática Experimental/prevención & control , Neoplasias Hepáticas Experimentales/prevención & control , Mitocondrias Hepáticas/efectos de los fármacos , Adenosina/farmacología , Adenosina/uso terapéutico , Adenosina Trifosfato/biosíntesis , Animales , Anticarcinógenos/farmacología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Complejo I de Transporte de Electrón/metabolismo , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Masculino , Potencial de la Membrana Mitocondrial , Mitocondrias Hepáticas/metabolismo , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA