Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 189: 36-47, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30710743

RESUMEN

The aim of this paper was to more completely study the mitochondrial CYP27A1 initiated acidic pathway of cholesterol metabolism. The mitochondrial CYP27A1 initiated pathway of cholesterol metabolism (acidic pathway) is known to synthesize two well-described vital regulators of cholesterol/lipid homeostasis, (25R)-26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). Both 26HC and 25HC have been shown to be subsequently 7α-hydroxylated by Cyp7b1; reducing their regulatory abilities and furthering their metabolism to chenodeoxycholic acid (CDCA). Cholesterol delivery into the inner mitochondria membrane, where CYP27A1 is located, is considered the pathway's only rate-limiting step. To further explore the pathway, we increased cholesterol transport into mitochondrial CYP27A1 by selectively increased expression of the gene encoding the steroidogenic acute transport protein (StarD1). StarD1 overexpression led to an unanticipated marked down-regulation of oxysterol 7α-hydroxylase (Cyp7b1), a marked increase in 26HC, and the formation of a third vital regulatory oxysterol, 24(S)-hydroxycholesterol (24HC), in B6/129 mice livers. To explore the further metabolism of 24HC, as well as, 25HC and 26HC, characterizations of oxysterols and bile acids using three murine models (StarD1 overexpression, Cyp7b1-/-, Cyp27a1-/-) and human Hep G2 cells were conducted. This report describes the discovery of a new mitochondrial-initiated pathway of oxysterol/bile acid biosynthesis. Just as importantly, it provides evidence for CYP7B1 as a key regulator of three vital intracellular regulatory oxysterol levels.


Asunto(s)
Familia 7 del Citocromo P450/metabolismo , Mitocondrias/metabolismo , Oxiesteroles/metabolismo , Esteroide Hidroxilasas/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Vías Biosintéticas , Células Hep G2 , Humanos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL
2.
Oncotarget ; 6(17): 15332-47, 2015 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-25895029

RESUMEN

We observed a co-upregulation of the insulin-like growth factor receptor (IGF-1R)/AKT/mammalian target of rapamycin (mTOR) [InAT] axis and the mevalonate-isoprenoid biosynthesis (MIB) pathways in colorectal cancer stem cells (CSCs) in an unbiased approach. Hence, we hypothesized that the InAT axis might regulate the MIB pathway to govern colorectal CSCs growth. Stimulation (IGF-1) or inhibition (IGF-1R depletion and pharmacological inhibition of IGF-1R/mTOR) of the InAT axis produced induction or attenuation of CSC growth as well as expression of CSC markers and self-renewal factors respectively. Intriguingly, activation of the InAT axis (IGF-1) caused significant upregulation of the MIB pathway genes (both mRNA and protein); while its inhibition produced the opposite effects in colonospheres. More importantly, supplementation with dimethylallyl- and farnesyl-PP, MIB metabolites downstream of isopentenyl-diphosphate delta isomerase (IDI), but not mevalonate and isopentenyl-pp that are upstream of IDI, resulted in a near-complete reversal of the suppressive effect of the InAT axis inhibitors on CSCs growth. The latter findings suggest a specific regulation of the MIB pathway by the InAT axis distal to the target of statins that inhibit 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Effects of IGF-1R inhibition on colonic CSCs proliferation and the MIB pathway were confirmed in an 'in vivo' HCT-116 xenograft model. These observations establish a novel mechanistic link between the InAT axis that is commonly deregulated in colorectal cancer and the MIB pathway in regulation of colonic CSCs growth. Hence, the InAT-MIB corridor is a novel target for developing paradigm shifting optimum anti-CSCs therapies for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/patología , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Receptor IGF Tipo 1/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Apoptosis , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Proliferación Celular/fisiología , Células HCT116 , Hemiterpenos/metabolismo , Hemiterpenos/farmacología , Humanos , Ácido Mevalónico/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Compuestos Organofosforados/metabolismo , Compuestos Organofosforados/farmacología , Fosfatos de Poliisoprenilo/metabolismo , Fosfatos de Poliisoprenilo/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/biosíntesis , Receptor IGF Tipo 1/biosíntesis , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacología , Esferoides Celulares , Serina-Treonina Quinasas TOR/metabolismo , Terpenos/metabolismo , Trasplante Heterólogo , Células Tumorales Cultivadas
3.
PLoS One ; 9(7): e103621, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25072708

RESUMEN

Oxysterol sulfation plays an important role in regulation of lipid metabolism and inflammatory responses. In the present study, we report the discovery of a novel regulatory sulfated oxysterol in nuclei of primary rat hepatocytes after overexpression of the gene encoding mitochondrial cholesterol delivery protein (StarD1). Forty-eight hours after infection of the hepatocytes with recombinant StarD1 adenovirus, a water-soluble oxysterol product was isolated and purified by chemical extraction and reverse-phase HPLC. Tandem mass spectrometry analysis identified the oxysterol as 5-cholesten-3ß, 25-diol, disulfate (25HCDS), and confirmed the structure by comparing with a chemically synthesized compound. Administration of 25HCDS to human THP-1-derived macrophages or HepG2 cells significantly inhibited cholesterol synthesis and markedly decreased lipid levels in vivo in NAFLD mouse models. RT-PCR showed that 25HCDS significantly decreased SREBP-1/2 activities by suppressing expression of their responding genes, including ACC, FAS, and HMG-CoA reductase. Analysis of lipid profiles in the liver tissues showed that administration of 25HCDS significantly decreased cholesterol, free fatty acids, and triglycerides by 30, 25, and 20%, respectively. The results suggest that 25HCDS inhibits lipid biosynthesis via blocking SREBP signaling. We conclude that 25HCDS is a potent regulator of lipid metabolism and propose its biosynthetic pathway.


Asunto(s)
Ésteres del Colesterol/análisis , Colesterol/metabolismo , Hidroxicolesteroles/análisis , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Adenoviridae/metabolismo , Animales , Células Cultivadas , Colesterol/análisis , Colesterol/biosíntesis , Ésteres del Colesterol/síntesis química , Ésteres del Colesterol/farmacología , Modelos Animales de Enfermedad , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Femenino , Células Hep G2 , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Hidroxicolesteroles/síntesis química , Hidroxicolesteroles/farmacología , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ratas , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
Am J Physiol Endocrinol Metab ; 302(7): E788-99, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22275753

RESUMEN

The nuclear receptor peroxisome proliferator-activated receptors (PPARs) are important in regulating lipid metabolism and inflammatory responses in macrophages. Activation of PPARγ represses key inflammatory response gene expressions. Recently, we identified a new cholesterol metabolite, 25-hydroxycholesterol-3-sulfate (25HC3S), as a potent regulatory molecule of lipid metabolism. In this paper, we report the effect of 25HC3S and its precursor 25-hydroxycholesterol (25HC) on PPARγ activity and on inflammatory responses. Addition of 25HC3S to human macrophages markedly increased nuclear PPARγ and cytosol IκB and decreased nuclear NF-κB protein levels. PPARγ response element reporter gene assays showed that 25HC3S significantly increased luciferase activities. PPARγ competitor assay showed that the K(i) for 25HC3S was ∼1 µM, similar to those of other known natural ligands. NF-κB-dependent promoter reporter gene assays showed that 25HC3S suppressed TNFα-induced luciferase activities only when cotransfected with pcDNAI-PPARγ plasmid. In addition, 25HC3S decreased LPS-induced expression and release of IL-1ß. In the PPARγ-specific siRNA transfected macrophages or in the presence of PPARγ-specific antagonist, 25HC3S failed to increase IκB and to suppress TNFα and IL-1ß expression. In contrast to 25HC3S, its precursor 25HC, a known liver X receptor ligand, decreased nuclear PPARγ and cytosol IκB and increased nuclear NF-κB protein levels. We conclude that 25HC3S acts in macrophages as a PPARγ ligand and suppresses inflammatory responses via the PPARγ/IκB/NF-κB signaling pathway.


Asunto(s)
Antiinflamatorios , Ésteres del Colesterol/farmacología , Hidroxicolesteroles/farmacología , Macrófagos/fisiología , PPAR gamma/fisiología , Western Blotting , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citocinas/análisis , Citocinas/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Hipoglucemiantes/farmacología , Proteínas I-kappa B/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , PPAR gamma/antagonistas & inhibidores , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Rosiglitazona , Transducción de Señal/efectos de los fármacos , Tiazolidinedionas/farmacología
5.
Biochim Biophys Acta ; 1811(10): 597-606, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21767660

RESUMEN

StarD4 is a member of the StarD4 subfamily of START domain proteins with a characteristic lipid binding pocket specific for cholesterol. The objective of this study was to define StarD4 subcellular localization, regulation, and function. Immunobloting showed that StarD4 is highly expressed in the mouse fibroblast cell line 3T3-L1, in human THP-1 macrophages, Kupffer cells (liver macrophages), and hepatocytes. In 3T3-L1 cells and THP-1 macrophages, StarD4 protein appeared localized to the cytoplasm and the endoplasmic reticulum (ER). More specifically, in THP-1 macrophages StarD4 co-localized to areas of the ER enriched in Acyl-CoA:cholesterol acyltransferase-1 (ACAT-1), and was closely associated with budding lipid droplets. The addition of purified StarD4 recombinant protein to an in vitro assay increased ACAT activity 2-fold, indicating that StarD4 serves as a rate-limiting step in cholesteryl ester formation by delivering cholesterol to ACAT-1-enriched ER. In addition, StarD4 protein was found to be highly regulated and to redistribute in response to sterol levels. In summary, these observations, together with our previous findings demonstrating the ability of increased StarD4 expression to increase bile acid synthesis and cholesteryl ester formation, provide strong evidence for StarD4 as a highly regulated, non-vesicular, directional, intracellular transporter of cholesterol which plays a key role in the maintenance of intracellular cholesterol homeostasis.


Asunto(s)
Fibroblastos/metabolismo , Macrófagos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Células 3T3-L1 , Acetil-CoA C-Acetiltransferasa/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Immunoblotting , Técnicas In Vitro , Hígado/metabolismo , Lovastatina/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esteroles/farmacología
6.
Am J Physiol Endocrinol Metab ; 295(6): E1369-79, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18854425

RESUMEN

The oxysterol receptor LXR is a key transcriptional regulator of lipid metabolism. LXR increases expression of SREBP-1, which in turn regulates at least 32 genes involved in lipid synthesis and transport. We recently identified 25-hydroxycholesterol-3-sulfate (25HC3S) as an important regulatory molecule in the liver. We have now studied the effects of 25HC3S and its precursor, 25-hydroxycholesterol (25HC), on lipid metabolism as mediated by the LXR/SREBP-1 signaling in macrophages. Addition of 25HC3S to human THP-1-derived macrophages markedly decreased nuclear LXR protein levels. 25HC3S administration was followed by dose- and time-dependent decreases in SREBP-1 mature protein and mRNA levels. 25HC3S decreased the expression of SREBP-1-responsive genes, acetyl-CoA carboxylase-1, and fatty acid synthase (FAS) as well as HMGR and LDLR, which are key proteins involved in lipid metabolism. Subsequently, 25HC3S decreased intracellular lipids and increased cell proliferation. In contrast to 25HC3S, 25HC acted as an LXR ligand, increasing ABCA1, ABCG1, SREBP-1, and FAS mRNA levels. In the presence of 25HC3S, 25HC, and LXR agonist T0901317, stimulation of LXR targeting gene expression was repressed. We conclude that 25HC3S acts in macrophages as a cholesterol satiety signal, downregulating cholesterol and fatty acid synthetic pathways via inhibition of LXR/SREBP signaling. A possible role of oxysterol sulfation is proposed.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología , Sulfatos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Ésteres del Colesterol/farmacología , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidroxicolesteroles/química , Hidroxicolesteroles/farmacología , Metabolismo de los Lípidos/genética , Lípidos/análisis , Receptores X del Hígado , Macrófagos/química , Macrófagos/metabolismo , Macrófagos/fisiología , Modelos Biológicos , Receptores Nucleares Huérfanos , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
7.
J Lipid Res ; 47(6): 1168-75, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16534142

RESUMEN

Human StarD5 belongs to the StarD4 subfamily of START (for steroidogenic acute regulatory lipid transfer) domain proteins. We previously reported that StarD5 is located in the cytosolic fraction of human liver and binds cholesterol and 25-hydroxycholesterol. After overexpression of the gene encoding StarD5 in primary rat hepatocytes, free cholesterol accumulated in intracellular membranes. These findings suggested StarD5 to be a directional cytosolic sterol transporter. The objective of this study was to determine the localization of StarD5 in human liver. Western blot analysis confirmed StarD5's presence in the liver but not in human hepatocytes. Immunohistochemistry studies showed StarD5 localized within sinusoidal lining cells in the human liver and colocalized with CD68, a marker for Kupffer cells. Western blot analyses identified the presence of StarD5 in monocytes and macrophages as well as mast cells, basophils, and promyelocytic cells, but not in human hepatocytes, endothelial cells, fibroblasts, osteocytes, astrocytes, or brain tissue. Cell fractionation and immunocytochemistry studies on THP-1 macrophages localized StarD5 to the cytosol and supported an association with the Golgi. The presence of this cholesterol/25-hydroxycholesterol-binding protein in cells related to inflammatory processes provides new clues to the role of this protein in free sterol transport in the cells and in lipid-mediated atherogenesis.


Asunto(s)
Proteínas Portadoras/análisis , Colesterol/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Western Blotting , Proteínas Portadoras/metabolismo , Línea Celular , Línea Celular Tumoral , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HL-60 , Células HT29 , Humanos , Inmunohistoquímica , Macrófagos del Hígado/metabolismo , Hígado/citología , Macrófagos/metabolismo , Microscopía Fluorescente , Monocitos/metabolismo , Unión Proteica , Esteroles/metabolismo
8.
J Lipid Res ; 47(5): 1081-90, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16505492

RESUMEN

This study reports the discovery of a novel sulfonated oxysterol found at high levels in the mitochondria and nuclei of primary rat hepatocytes after overexpression of the gene encoding steroidogenic acute regulatory protein (StarD1). Forty-eight hours after infection of primary rat hepatocytes with recombinant adenovirus encoding StarD1, rates of bile acid synthesis increased by 4-fold. Concurrently, [(14)C]cholesterol metabolites (oxysterols) were increased dramatically in both the mitochondria and nuclei of StarD1-overexpressing cells, but not in culture medium. A water-soluble [(14)C]oxysterol product was isolated and purified by chemical extraction and reverse-phase HPLC. Enzymatic digestion, HPLC, and tandem mass spectrometry analysis identified the water-soluble oxysterol as 5-cholesten-3beta,25-diol 3-sulfonate. Further experiments detected this cholesterol metabolite in the nuclei of normal human liver tissues. Based upon these observations, we hypothesized a new pathway by which cholesterol is metabolized in the mitochondrion.


Asunto(s)
Hepatocitos/química , Hidroxicolesteroles/análisis , Ésteres del Ácido Sulfúrico/análisis , Animales , Núcleo Celular/química , Células Cultivadas , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilasa/biosíntesis , Cromatografía Líquida de Alta Presión , Cromatografía Liquida/métodos , Humanos , Espectrometría de Masas/métodos , Mitocondrias Hepáticas/química , Fosfoproteínas/biosíntesis , Ratas
9.
Mol Pharmacol ; 67(1): 195-203, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15465923

RESUMEN

H(3) autoreceptors provide feedback control of neurotransmitter synthesis in histaminergic neurons, but the transduction pathways involved are poorly understood. In rat brain cortical slices, histamine synthesis can be stimulated by depolarization and inhibited by H(3) agonists. We show that histamine synthesis stimulation by depolarization with 30 mM K(+) requires extracellular calcium entry, mostly through N-type channels, and subsequent activation of calcium/calmodulin-dependent protein kinase type II. In vitro, this kinase phosphorylated and activated histidine decarboxylase, the histamine-synthesizing enzyme. Inhibition of depolarization-stimulated histamine synthesis by the histamine H(3) receptor agonist imetit was impaired by preincubation with pertussis toxin and by the presence of a myristoylated peptide (myristoyl-N-QEHAQEPERQYMHIGTMVE-FAYALVGK) blocking the actions of G-protein betagamma subunits. The stimulation of another G(i/o)-coupled receptor, adenosine A(1), also decreased depolarization-stimulated histamine synthesis. In contrast, protein kinase A activation, which is also repressed by H(3) receptors, elicited a depolarization- and calcium/calmodulin-independent stimulation of histamine synthesis. Protein kinase A was able also to phosphorylate and activate histidine decarboxylase in vitro. These results show how depolarization activates histamine synthesis in nerve endings and demonstrate that both pathways modulating neurotransmitter synthesis are controlled by H(3) autoreceptors.


Asunto(s)
Encéfalo/fisiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Histamina/biosíntesis , Receptores Histamínicos H3/fisiología , Tiourea/análogos & derivados , Secuencia de Aminoácidos , Animales , Bloqueadores de los Canales de Calcio/farmacología , Proteína Quinasa Tipo II Dependiente de AMP Cíclico , Agonistas de los Receptores Histamínicos/farmacología , Histidina Descarboxilasa/metabolismo , Imidazoles/farmacología , Técnicas In Vitro , Masculino , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Toxina del Pertussis/farmacología , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptores Histamínicos H3/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Tiourea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA