Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Anal Chem ; 96(16): 6311-6320, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38594017

RESUMEN

Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host-pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI measurements were conducted in positive- and negative-ion mode for the visualization of neutral and acidic GSLs. Based on nano-HILIC MS/MS results, we discovered no downregulated but 50 significantly upregulated GSLs in liver samples of infected hamsters. AP-SMALDI MSI showed that 44 of these GSL species were associated with the granulomas in the liver tissue. Our findings suggest an important role of GSLs during granuloma formation.


Asunto(s)
Glicoesfingolípidos , Hígado , Schistosoma mansoni , Esquistosomiasis mansoni , Animales , Glicoesfingolípidos/metabolismo , Glicoesfingolípidos/química , Hígado/metabolismo , Hígado/parasitología , Cricetinae , Esquistosomiasis mansoni/parasitología , Esquistosomiasis mansoni/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Mesocricetus , Cromatografía Liquida , Masculino
2.
PNAS Nexus ; 3(4): pgae104, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562583

RESUMEN

Schistosomiasis, a widespread neglected tropical disease, presents a complex and multifaceted clinical-pathological profile. Using hamsters as final hosts, we dissected molecular events following Schistosoma mansoni infection in the liver-the organ most severely affected in schistosomiasis patients. Employing tandem mass tag-based proteomics, we studied alterations in the liver proteins in response to various infection modes and genders. We examined livers from female and male hamsters that were: noninfected (control), infected with either unisexual S. mansoni cercariae (single-sex) or both sexes (bisex). The infection induced up-regulation of proteins associated with immune response, cytoskeletal reorganization, and apoptotic signaling. Notably, S. mansoni egg deposition led to the down-regulation of liver factors linked to energy supply and metabolic processes. Gender-specific responses were observed, with male hamsters showing higher susceptibility, supported by more differentially expressed proteins than found in females. Of note, metallothionein-2 and S100a6 proteins exhibited substantial up-regulation in livers of both genders, suggesting their pivotal roles in the liver's injury response. Immunohistochemistry and real-time-qPCR confirmed strong up-regulation of metallothionein-2 expression in the cytoplasm and nucleus upon the infection. Similar findings were seen for S100a6, which localized around granulomas and portal tracts. We also observed perturbations in metabolic pathways, including down-regulation of enzymes involved in xenobiotic biotransformation, cellular energy metabolism, and lipid modulation. Furthermore, lipidomic analyses through liquid chromatography-tandem mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging identified extensive alterations, notably in cardiolipin and triacylglycerols, suggesting specific roles of lipids during pathogenesis. These findings provide unprecedented insights into the hepatic response to S. mansoni infection, shedding light on the complexity of liver pathology in this disease.

5.
Hepatobiliary Surg Nutr ; 13(1): 112-114, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38322218
8.
Cell Mol Gastroenterol Hepatol ; 17(1): 107-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37696392

RESUMEN

BACKGROUND & AIMS: Schistosomiasis is one of the most prominent parasite-induced infectious diseases, affecting more than 250 million people. Schistosoma mansoni causes metabolic exhaustion and a strong redox imbalance in the liver, causing parenchymal damage, and may predispose for cancer. We investigated whether oxidative stress provokes hepatocellular proliferation upon S. mansoni infection. METHODS: The cell cycle, replication stress response, and proliferation were analyzed on transcriptional and protein levels in the livers of S. mansoni-infected hamsters and by mechanistic gain- and loss-of-function experiments in human hepatoma cells. Major results were validated in human biopsy specimens of S. mansoni-infected patients. RESULTS: S. mansoni infection induced licensing factors of DNA replication and cell-cycle checkpoint cyclins in parallel with a DNA damage response in hamster hepatocytes. Moreover, even unisexual infection without egg effects, as a reflection of a chronic inflammatory process, resulted in a moderate activation of several cell-cycle markers. S. mansoni soluble egg antigens induced proliferation of human hepatoma cells that could be abolished by reduced glutathione. CONCLUSIONS: Our data suggest that hepatocellular proliferation is triggered by S. mansoni egg-induced oxidative stress.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Esquistosomiasis mansoni , Cricetinae , Animales , Humanos , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/metabolismo , Estrés Oxidativo , Proliferación Celular
9.
Sci Rep ; 13(1): 20390, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990129

RESUMEN

Schistosomiasis is a parasitic disease affecting more than 250 million people worldwide. The transcription factor c-Jun, which is induced in S. mansoni infection-associated liver disease, can promote hepatocyte survival but can also trigger hepatocellular carcinogenesis. We aimed to analyze the hepatic role of c-Jun following S. mansoni infection. We adopted a hepatocyte-specific c-Jun knockout mouse model (Alb-Cre/c-Jun loxP) and analyzed liver tissue and serum samples by quantitative real-time PCR array, western blotting, immunohistochemistry, hydroxyproline quantification, and functional analyses. Hepatocyte-specific c-Jun knockout (c-JunΔli) was confirmed by immunohistochemistry and western blotting. Infection with S. mansoni induced elevated aminotransferase-serum levels in c-JunΔli mice. Of note, hepatic Cyclin D1 expression was induced in infected c-Junf/f control mice but to a lower extent in c-JunΔli mice. S. mansoni soluble egg antigen-induced proliferation in a human hepatoma cell line was diminished by inhibition of c-Jun signaling. Markers for apoptosis, oxidative stress, ER stress, inflammation, autophagy, DNA-damage, and fibrosis were not altered in S. mansoni infected c-JunΔli mice compared to infected c-Junf/f controls. Enhanced liver damage in c-JunΔli mice suggested a protective role of c-Jun. A reduced Cyclin D1 expression and reduced hepatic regeneration could be the reason. In addition, it seems likely that the trends in pathological changes in c-JunΔli mice cumulatively led to a loss of the protective potential being responsible for the increased hepatocyte damage and loss of regenerative ability.


Asunto(s)
Schistosoma mansoni , Esquistosomiasis mansoni , Humanos , Ratones , Animales , Ciclina D1/metabolismo , Esquistosomiasis mansoni/parasitología , Hígado/metabolismo , Hepatocitos/metabolismo , Proliferación Celular
13.
Viruses ; 15(4)2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-37112819

RESUMEN

Chronic hepatitis B virus (HBV) infection is a global health threat. Mutations in the surface antigen of HBV (HBsAg) may alter its antigenicity, infectivity, and transmissibility. A patient positive for HBV DNA and detectable but low-level HBsAg in parallel with anti-HBs suggested the presence of immune and/or diagnostic escape variants. To support this hypothesis, serum-derived HBs gene sequences were amplified and cloned for sequencing, which revealed infection with exclusively non-wildtype HBV subgenotype (sgt) D3. Three distinct mutations in the antigenic loop of HBsAg that caused additional N-glycosylation were found in the variant sequences, including a previously undescribed six-nucleotide insertion. Cellular and secreted HBsAg was analyzed for N-glycosylation in Western blot after expression in human hepatoma cells. Secreted HBsAg was also subjected to four widely used, state-of-the-art diagnostic assays, which all failed to detect the hyperglycosylated insertion variant. Additionally, the recognition of mutant HBsAg by vaccine- and natural infection-induced anti-HBs antibodies was severely impaired. Taken together, these data suggest that the novel six-nucleotide insertion as well as two other previously described mutations causing hyperglycosylation in combination with immune escape mutations have a critical impact on in vitro diagnostics and likely increase the risk of breakthrough infection by evasion of vaccine-induced immunity.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Humanos , Virus de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/genética , Anticuerpos contra la Hepatitis B , Vacunas contra Hepatitis B , Mutación , Factores Inmunológicos , Nucleótidos , Proteínas de la Membrana/genética
14.
JHEP Rep ; 5(2): 100625, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36590323

RESUMEN

Background & Aims: Schistosomiasis is a parasitic infection which affects more than 200 million people globally. Schistosome eggs, but not the adult worms, are mainly responsible for schistosomiasis-specific morbidity in the liver. It is unclear if S. mansoni eggs consume host metabolites, and how this compromises the host parenchyma. Methods: Metabolic reprogramming was analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging, liquid chromatography with high-resolution mass spectrometry, metabolite quantification, confocal laser scanning microscopy, live cell imaging, quantitative real-time PCR, western blotting, assessment of DNA damage, and immunohistology in hamster models and functional experiments in human cell lines. Major results were validated in human biopsies. Results: The infection with S. mansoni provokes hepatic exhaustion of neutral lipids and glycogen. Furthermore, the distribution of distinct lipid species and the regulation of rate-limiting metabolic enzymes is disrupted in the liver of S. mansoni infected animals. Notably, eggs mobilize, incorporate, and store host lipids, while the associated metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes. Administration of reactive oxygen species scavengers ameliorates these deleterious effects. Conclusions: Our findings indicate that S. mansoni eggs completely reprogram lipid and carbohydrate metabolism via soluble factors, which results in oxidative stress-induced cell damage in the host parenchyma. Impact and implications: The authors demonstrate that soluble egg products of the parasite S. mansoni induce hepatocellular reprogramming, causing metabolic exhaustion and a strong redox imbalance. Notably, eggs mobilize, incorporate, and store host lipids, while the metabolic reprogramming causes oxidative stress-induced DNA damage in hepatocytes, independent of the host's immune response. S. mansoni eggs take advantage of the host environment through metabolic reprogramming of hepatocytes and enterocytes. By inducing DNA damage, this neglected tropical disease might promote hepatocellular damage and thus influence international health efforts.

15.
Inn Med (Heidelb) ; 64(4): 323-328, 2023 Apr.
Artículo en Alemán | MEDLINE | ID: mdl-36580094

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is nowadays the leading cause of chronic liver disease worldwide and shows a strong association with the metabolic syndrome. The NAFLD is a systemic disease associated with a plethora of extrahepatic manifestations and comorbidities, such as type 2 diabetes, obesity and dyslipidemia. These extrahepatic disorders are related either to secondary effects of the associated obesity or to pathophysiological effects of insulin resistance in NAFLD. The three most common causes of the observed increased morbidity and mortality associated with NAFLD are cardiovascular diseases, liver diseases, such as cirrhosis, and cancer. In this overview, cardiovascular diseases, type 2 diabetes mellitus and chronic kidney diseases in connection with NAFLD are discussed as examples, as well as tumor entities, in particular colon cancer, lung diseases (obstructive sleep apnea), endocrine diseases (hypothyroidism) and systemic phenomena associated with NAFLD (e.g. iron overload and thrombophilia). In addition to focusing on the pathogenesis of these extrahepatic manifestations, the clinical implications are highlighted. So far there are no drugs approved for the indication NAFLD in Germany. The new NAFLD S2k guidelines offer a way out of the current "therapeutic nihilism". Diagnostic and therapeutic algorithms based on the metabolic comorbidities and the stage of fibrosis are designed with practical relevance and can be used in everyday medical practice. Therefore, clear basic measures and drug recommendations can be given for NAFLD depending on the comorbidities and stage of fibrosis.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Humanos , Síndrome Metabólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Diabetes Mellitus Tipo 2/complicaciones , Enfermedades Cardiovasculares/complicaciones , Obesidad/complicaciones , Fibrosis
16.
Biomedicines ; 12(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38255140

RESUMEN

The pleiotropic chemokine chemerin is involved in multiple processes in metabolism and inflammation. The present study aimed to elucidate its regulation in morbid obesity and during therapy-induced rapid weight loss. A total of 128 severely obese patients were enrolled, and their basal anthropometric and clinical parameters were assessed. In total, 64 individuals attended a conservative 12-month weight loss program that included a low calorie-formula diet (LCD), and 64 patients underwent bariatric surgery (Roux-en-Y gastric bypass, RYGB). Blood serum was obtained at study baseline and at follow-up visits after 3, 6, and 12 months. Systemic chemerin concentrations, as well as metabolic and immunological parameters, were quantified. During the 12-month period studied, serum chemerin levels decreased significantly with weight loss after bariatric surgery, as well as with conservative low calorie therapy; however, the effects of RYGB were generally stronger. No substantial associations of systemic chemerin concentrations with therapy-induced improvement of type 2 diabetes and with indicators of liver function and fibrosis were observed. We conclude that systemic chemerin levels decrease in obese individuals during weight loss, regardless of the therapeutic strategy. A potential involvement in weight loss-associated improvement of metabolic disorders and liver fibrosis remains to be further investigated.

17.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430499

RESUMEN

Allocation of morbidly obese patients to either conservative therapy options-such as lifestyle intervention and/or low-calorie diet (LCD)-or to bariatric surgery-preferably sleeve gastrectomy or Roux-en-Y gastric bypass (RYGB)-represents a crucial decision in order to obtain sustainable metabolic improvement and weight loss. The present study encompasses 160 severely obese patients, 81 of whom participated in an LCD program, whereas 79 underwent RYGB surgery. The post-interventional dynamics of physiologically relevant adipokines and hepatokines (ANGPTL4, CCL5, GDF15, GPNMB, IGFBP6), as well as their correlation with fat mass reduction and improvement of liver fibrosis, were analyzed. Systemic GDF15 was characterized as an excellent predictive marker for hepatic fibrosis as well as type 2 diabetes mellitus. Of note, baseline GDF15 serum concentrations were positively correlated with NFS and HbA1c levels after correction for BMI, suggesting GDF15 as a BMI-independent marker of hepatic fibrosis and T2D in obese individuals. Specific GDF15 cut-off values for both diseases were calculated. Overall, the present data demonstrate that circulating levels of specific adipokines and hepatokines are regulated with therapy-induced fat loss and metabolic improvement and might, therefore, serve as biomarkers for the success of obesity therapy strategies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Derivación Gástrica , Obesidad Mórbida , Humanos , Obesidad Mórbida/diagnóstico , Obesidad Mórbida/cirugía , Adipoquinas , Diabetes Mellitus Tipo 2/etiología , Biomarcadores , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/terapia , Cirrosis Hepática/etiología , Glicoproteínas de Membrana
18.
Cells ; 11(11)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35681524

RESUMEN

Mesenchymal stromal cells (MSC) increasingly emerge as an option to ameliorate non-alcoholic steatohepatitis (NASH), a serious disease, which untreated may progress to liver cirrhosis and cancer. Before clinical translation, the mode of action of MSC needs to be established. Here, we established NASH in an immune-deficient mouse model by feeding a high fat diet. Human bone-marrow-derived MSC were delivered to the liver via intrasplenic transplantation. As verified by biochemical and image analyses, human mesenchymal stromal cells improved high-fat-diet-induced NASH in the mouse liver by decreasing hepatic lipid content and inflammation, as well as by restoring tissue homeostasis. MSC-mediated changes in gene expression indicated the switch from lipid storage to lipid utilization. It was obvious that host mouse hepatocytes harbored human mitochondria. Thus, it is feasible that resolution of NASH in mouse livers involved the donation of human mitochondria to the mouse hepatocytes. Therefore, human MSC might provide oxidative capacity for lipid breakdown followed by restoration of metabolic and tissue homeostasis.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Humanos , Lípidos , Células Madre Mesenquimatosas/metabolismo , Ratones , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo
19.
Visc Med ; 38(2): 126-132, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35614896

RESUMEN

Background: The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing and strongly associated with the metabolic syndrome, especially with obesity. A subtype, nonalcoholic steatohepatitis (NASH), might progress to advanced fibrosis and cirrhosis. NASH patients have an increased all-cause mortality. First and foremost are malignancies, followed by cardiovascular diseases. Summary: The NAFLD fibrosis score and noninvasive liver stiffness measurement (transient hepatic elastography) are essential components for the diagnostic risk assessment of NAFLD patients. Other steatoses (alcohol, genetic disorders, drugs, toxins, malnutrition, etc.) must be considered in the differential diagnosis. So far, there is no approved liver-specific drug therapy with a proven effect on NAFLD for patients without diabetes mellitus. Obeticholic acid (FXR agonist), cenicriviroc (a dual inhibitor of the chemokine receptors (CCR), CCR2 and CCR5), acetyl-CoA carboxylase inhibitors, and several thyroid hormone analogs are the most advanced substances in clinical development in ongoing phase 2 and 3 studies. Key Messages: Weight loss, physical training, and the screening and treatment of risk factors represent the cornerstones of NAFLD therapy. Treatment with glucagon-like peptide 1 analogs (e.g., liraglutide, semaglutide) and sodium-dependent glucose transporter 2 inhibitors can be recommended in patients with diabetes and NASH.

20.
J Clin Med ; 11(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35407364

RESUMEN

Obesity and type 2 diabetes mellitus (T2D) represent important comorbidities of the metabolic syndrome, which are associated with non-alcoholic fatty liver disease (NAFLD)-related hepatic fibrosis. In total, 160 morbidly obese patients-81 following a low-calorie formula diet (LCD) program and 79 undergoing bariatric surgery (Roux-en-Y gastric bypass, RYGB)-were examined for anthropometric and metabolic parameters at base-line and during 12 months of weight loss, focusing on a putative co-regulation of T2D parameters and liver fibrosis risk. High NAFLD fibrosis scores (NFS) before intervention were associated with elevated HbA1c levels and T2D. Loss of weight and body fat percentage (BFL) were associated with improved glucose and lipid metabolism and reduced risk of NAFLD-related fibrosis, with particularly beneficial effects by RYGB. Both T2D improvement and NFS decrease were positively associated with high BFL. A highly significant correlation of NFS reduction with BFL was restricted to male patients while being absent in females, accompanied by generally higher BFL in men. Overall, the data display the relation of BFL, T2D improvement, and reduced NAFLD-related fibrosis risk during weight loss in morbidly obese individuals induced by diet or RYGB. Furthermore, our data suggest a considerable sexual dimorphism concerning the correlation of fat loss and improved risk of liver fibrosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA