Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Methods Mol Biol ; 2845: 203-218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115669

RESUMEN

The characterization of interactions between autophagy modifiers (Atg8-family proteins) and their natural ligands (peptides and proteins) or small molecules is important for a detailed understanding of selective autophagy mechanisms and for the design of potential Atg8 inhibitors that affect the autophagy processes in cells. The fluorescence polarization (FP) assay is a rapid, cost-effective, and robust method that provides affinity and selectivity information for small molecules and peptide ligands targeting human Atg8 proteins.This chapter introduces the basic principles of FP assays. In addition, a case study on peptide interaction with human Atg8 proteins (LC3/GABARAPs) is described. Finally, data analysis and quality control of FP assays are discussed for the proper calculation of Ki values for the measured compounds.


Asunto(s)
Polarización de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Proteínas Asociadas a Microtúbulos , Unión Proteica , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Polarización de Fluorescencia/métodos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/efectos de los fármacos , Péptidos/metabolismo , Péptidos/química , Ligandos , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo
2.
Methods Mol Biol ; 2845: 219-235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115670

RESUMEN

Isothermal titration calorimetry (ITC) is a widely used technique for the characterization of protein-protein and protein-ligand interactions. It provides information on the stoichiometry, affinity, and thermodynamic driving forces of interactions. This chapter exemplifies the use of ITC to investigate interactions between human autophagy modifiers (LC3/GABARAP proteins) and their interaction partners, the LIR motif-containing sequences. The purpose of this report is to present a detailed protocol for the production of LC3/GABARAP-interacting LIR peptides using E. coli expression systems. In addition, we outline the design of ITC experiments using the LC3/GABARAP:peptide interactions as an example. Comprehensive troubleshooting notes are provided to facilitate the adaptation of these protocols to different ligand-receptor systems. The methodology outlined for studying protein-ligand interactions will help to avoid common errors and misinterpretations of experimental results.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Calorimetría , Proteínas Asociadas a Microtúbulos , Unión Proteica , Termodinámica , Calorimetría/métodos , Humanos , Ligandos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Escherichia coli/metabolismo , Péptidos/química , Péptidos/metabolismo
3.
Cell Rep ; 42(12): 113484, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37999976

RESUMEN

The nucleolar scaffold protein NPM1 is a multifunctional regulator of cellular homeostasis, genome integrity, and stress response. NPM1 mutations, known as NPM1c variants promoting its aberrant cytoplasmic localization, are the most frequent genetic alterations in acute myeloid leukemia (AML). A hallmark of AML cells is their dependency on elevated autophagic flux. Here, we show that NPM1 and NPM1c induce the autophagy-lysosome pathway by activating the master transcription factor TFEB, thereby coordinating the expression of lysosomal proteins and autophagy regulators. Importantly, both NPM1 and NPM1c bind to autophagy modifiers of the GABARAP subfamily through an atypical binding module preserved within its N terminus. The propensity of NPM1c to induce autophagy depends on this module, likely indicating that NPM1c exerts its pro-autophagic activity by direct engagement with GABARAPL1. Our data report a non-canonical binding mode of GABARAP family members that drives the pro-autophagic potential of NPM1c, potentially enabling therapeutic options.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Leucemia Mieloide Aguda/metabolismo , Autofagia/fisiología , Mutación/genética , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
4.
J Mol Biol ; 434(16): 167720, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35839840

RESUMEN

Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD•GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD.


Asunto(s)
ADP-Ribosilación , Adenosina/análogos & derivados , Inhibidores de Proteasa de Coronavirus , Poli(ADP-Ribosa) Polimerasas , SARS-CoV-2 , ADP-Ribosilación/efectos de los fármacos , Adenosina/química , Adenosina/farmacología , Adenosina Difosfato Ribosa/química , Inhibidores de Proteasa de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/farmacología , Humanos , Poli(ADP-Ribosa) Polimerasas/química , Unión Proteica , Dominios Proteicos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología
5.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299007

RESUMEN

Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1 undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1 (E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite the importance of ufmylation in a variety of cellular processes and its role in the pathogenicity of many human diseases, the molecular mechanisms of the ufmylation cascade remains unclear. In this study we focused on the biophysical and biochemical characterization of the interaction between UBA5 and UFC1. We explored the hypothesis that the unstructured C-terminal region of UBA5 serves as a regulatory region, controlling cellular localization of the elements of the ufmylation cascade and effective interaction between them. We found that the last 20 residues in UBA5 are pivotal for binding to UFC1 and can accelerate the transfer of UFM1 to UFC1. We solved the structure of a complex of UFC1 and a peptide spanning the last 20 residues of UBA5 by NMR spectroscopy. This structure in combination with additional NMR titration and isothermal titration calorimetry experiments revealed the mechanism of interaction and confirmed the importance of the C-terminal unstructured region in UBA5 for the ufmylation cascade.


Asunto(s)
Proteínas/química , Enzimas Activadoras de Ubiquitina/química , Enzimas Ubiquitina-Conjugadoras/química , Rastreo Diferencial de Calorimetría , Expresión Génica , Espectroscopía de Resonancia Magnética , Mutación , Péptidos/química , Unión Proteica , Dominios Proteicos , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes , Termodinámica , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
6.
Cells ; 9(9)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882854

RESUMEN

Autophagy is a common name for a number of catabolic processes, which keep the cellular homeostasis by removing damaged and dysfunctional intracellular components. Impairment or misbalance of autophagy can lead to various diseases, such as neurodegeneration, infection diseases, and cancer. A central axis of autophagy is formed along the interactions of autophagy modifiers (Atg8-family proteins) with a variety of their cellular counter partners. Besides autophagy, Atg8-proteins participate in many other pathways, among which membrane trafficking and neuronal signaling are the most known. Despite the fact that autophagy modifiers are well-studied, as the small globular proteins show similarity to ubiquitin on a structural level, the mechanism of their interactions are still not completely understood. A thorough analysis and classification of all known mechanisms of Atg8-protein interactions could shed light on their functioning and connect the pathways involving Atg8-proteins. In this review, we present our views of the key features of the Atg8-proteins and describe the basic principles of their recognition and binding by interaction partners. We discuss affinity and selectivity of their interactions as well as provide perspectives for discovery of new Atg8-interacting proteins and therapeutic approaches to tackle major human diseases.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Secuencia de Bases , Homeostasis/fisiología , Humanos , Enlace de Hidrógeno , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta
7.
Autophagy ; 16(2): 256-270, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30990354

RESUMEN

Short linear motifs, known as LC3-interacting regions (LIRs), interact with mactoautophagy/autophagy modifiers (Atg8/LC3/GABARAP proteins) via a conserved universal mechanism. Typically, this includes the occupancy of 2 hydrophobic pockets on the surface of Atg8-family proteins by 2 specific aromatic and hydrophobic residues within the LIR motifs. Here, we describe an alternative mechanism of Atg8-family protein interaction with the non-canonical UBA5 LIR, an E1-like enzyme of the ufmylation pathway that preferentially interacts with GABARAP but not LC3 proteins. By solving the structures of both GABARAP and GABARAPL2 in complex with the UBA5 LIR, we show that in addition to the binding to the 2 canonical hydrophobic pockets (HP1 and HP2), a conserved tryptophan residue N-terminal of the LIR core sequence binds into a novel hydrophobic pocket on the surface of GABARAP proteins, which we term HP0. This mode of action is unique for UBA5 and accompanied by large rearrangements of key residues including the side chains of the gate-keeping K46 and the adjacent K/R47 in GABARAP proteins. Swapping mutations in LC3B and GABARAPL2 revealed that K/R47 is the key residue in the specific binding of GABARAP proteins to UBA5, with synergetic contributions of the composition and dynamics of the loop L3. Finally, we elucidate the physiological relevance of the interaction and show that GABARAP proteins regulate the localization and function of UBA5 on the endoplasmic reticulum membrane in a lipidation-independent manner.Abbreviations: ATG: AuTophaGy-related; EGFP: enhanced green fluorescent protein; GABARAP: GABA-type A receptor-associated protein; ITC: isothermal titration calorimetry; KO: knockout; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NMR: nuclear magnetic resonance; RMSD: root-mean-square deviation of atomic positions; TKO: triple knockout; UBA5: ubiquitin like modifier activating enzyme 5.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Membranas Intracelulares/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Enzimas Activadoras de Ubiquitina/química , Enzimas Activadoras de Ubiquitina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Lisina/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Mutación/genética , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad
8.
Mol Cell ; 77(1): 164-179.e6, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31732457

RESUMEN

The family of bacterial SidE enzymes catalyzes non-canonical phosphoribosyl-linked (PR) serine ubiquitination and promotes infectivity of Legionella pneumophila. Here, we describe identification of two bacterial effectors that reverse PR ubiquitination and are thus named deubiquitinases for PR ubiquitination (DUPs; DupA and DupB). Structural analyses revealed that DupA and SidE ubiquitin ligases harbor a highly homologous catalytic phosphodiesterase (PDE) domain. However, unlike SidE ubiquitin ligases, DupA displays increased affinity to PR-ubiquitinated substrates, which allows DupA to cleave PR ubiquitin from substrates. Interfering with DupA-ubiquitin binding switches its activity toward SidE-type ligase. Given the high affinity of DupA to PR-ubiquitinated substrates, we exploited a catalytically inactive DupA mutant to trap and identify more than 180 PR-ubiquitinated host proteins in Legionella-infected cells. Proteins involved in endoplasmic reticulum (ER) fragmentation and membrane recruitment to Legionella-containing vacuoles (LCV) emerged as major SidE targets. The global map of PR-ubiquitinated substrates provides critical insights into host-pathogen interactions during Legionella infection.


Asunto(s)
Enzimas Desubicuitinizantes/metabolismo , Serina/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Células A549 , Proteínas Bacterianas/metabolismo , Dominio Catalítico/fisiología , Línea Celular , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/fisiología , Humanos , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/metabolismo , Vacuolas/metabolismo
9.
Mol Cell ; 76(2): 268-285, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31585693

RESUMEN

The clearance of surplus, broken, or dangerous components is key for maintaining cellular homeostasis. The failure to remove protein aggregates, damaged organelles, or intracellular pathogens leads to diseases, including neurodegeneration, cancer, and infectious diseases. Autophagy is the evolutionarily conserved pathway that sequesters cytoplasmic components in specialized vesicles, autophagosomes, which transport the cargo to the degradative compartments (vacuoles or lysosomes). Research during the past few decades has elucidated how autophagosomes engulf their substrates selectively. This type of autophagy involves a growing number of selective autophagy receptors (SARs) (e.g., Atg19 in yeasts, p62/SQSTM1 in mammals), which bind to the cargo and simultaneously engage components of the core autophagic machinery via direct interaction with the ubiquitin-like proteins (UBLs) of the Atg8/LC3/GABARAP family and adaptors, Atg11 (in yeasts) or FIP200 (in mammals). In this Review, we critically discuss the biology of the SARs with special emphasis on their interactions with UBLs.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Fúngicas/metabolismo , Transducción de Señal , Levaduras/metabolismo , Animales , Autofagosomas/patología , Proteínas Relacionadas con la Autofagia/genética , Sitios de Unión , Proteínas Fúngicas/genética , Humanos , Ligandos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ubiquitinación , Ubiquitinas/metabolismo , Levaduras/genética
10.
Nat Commun ; 10(1): 4176, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519908

RESUMEN

The centrosome is the master orchestrator of mitotic spindle formation and chromosome segregation in animal cells. Centrosome abnormalities are frequently observed in cancer, but little is known of their origin and about pathways affecting centrosome homeostasis. Here we show that autophagy preserves centrosome organization and stability through selective turnover of centriolar satellite components, a process we termed doryphagy. Autophagy targets the satellite organizer PCM1 by interacting with GABARAPs via a C-terminal LIR motif. Accordingly, autophagy deficiency results in accumulation of large abnormal centriolar satellites and a resultant dysregulation of centrosome composition. These alterations have critical impact on centrosome stability and lead to mitotic centrosome fragmentation and unbalanced chromosome segregation. Our findings identify doryphagy as an important centrosome-regulating pathway and bring mechanistic insights to the link between autophagy dysfunction and chromosomal instability. In addition, we highlight the vital role of centriolar satellites in maintaining centrosome integrity.


Asunto(s)
Autofagia/fisiología , Centriolos/metabolismo , Centrosoma/metabolismo , Mitosis/fisiología , Autofagia/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Cromatografía Liquida , Humanos , Immunoblotting , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Microscopía Fluorescente , Microtúbulos/metabolismo , Mitosis/genética , Simulación de Dinámica Molecular
11.
Nat Commun ; 9(1): 3755, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30217973

RESUMEN

The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Quinasa I-kappa B/genética , Mitofagia/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Quinasa I-kappa B/metabolismo , Mitocondrias/metabolismo , Fosforilación , Proteínas Quinasas , Procesamiento Proteico-Postraduccional , Serina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
12.
Chemistry ; 24(31): 7861-7865, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29656465

RESUMEN

The interaction of fibroblast growth factors (FGFs) with their fibroblast growth factor receptors (FGFRs) are important in the signaling network of cell growth and development. SSR128129E (SSR), a ligand of small molecular weight with potential anti-cancer properties, acts allosterically on the extracellular domains of FGFRs. Up to now, the structural basis of SSR binding to the D3 domain of FGFR remained elusive. This work reports the structural characterization of the interaction of SSR with one specific receptor, FGFR3, by NMR spectroscopy. This information provides a basis for rational drug design for allosteric FGFR inhibitors.


Asunto(s)
Antineoplásicos/química , Indolizinas/química , Inhibidores de Proteínas Quinasas/química , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , ortoaminobenzoatos/química , Regulación Alostérica , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Unión Proteica , Receptores de Factores de Crecimiento de Fibroblastos/química , Relación Estructura-Actividad , Termodinámica
13.
J Biol Chem ; 292(37): 15340-15351, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28784659

RESUMEN

Posttranslational modifications by small ubiquitin-like modifiers (SUMOs) regulate many cellular processes, including genome integrity, gene expression, and ribosome biogenesis. The E2-conjugating enzyme Ubc9 catalyzes the conjugation of SUMOs to ϵ-amino groups of lysine residues in target proteins. Attachment of SUMO moieties to internal lysines in Ubc9 itself can further lead to the formation of polymeric SUMO chains. Mono- and poly-SUMOylations of target proteins provide docking sites for distinct adapter and effector proteins important for regulating discrete SUMO-regulated pathways. However, molecular tools to dissect pathways depending on either mono- or poly-SUMOylation are largely missing. Using a protein-engineering approach, we generated high-affinity SUMO2 variants by phage display that bind the back side binding site of Ubc9 and function as SUMO-based Ubc9 inhibitors (SUBINs). Importantly, we found that distinct SUBINs primarily inhibit poly-SUMO chain formation, whereas mono-SUMOylation was not impaired. Proof-of-principle experiments demonstrated that in a cellular context, SUBINs largely prevent heat shock-triggered poly-SUMOylation. Moreover, SUBINs abrogated arsenic-induced degradation of promyelocytic leukemia protein. We propose that the availability of the new chain-selective SUMO inhibitors reported here will enable a thorough investigation of poly-SUMO-mediated cellular processes, such as DNA damage responses and cell cycle progression.


Asunto(s)
Modelos Moleculares , Proteína de la Leucemia Promielocítica/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Enzimas Ubiquitina-Conjugadoras/metabolismo , Sustitución de Aminoácidos , Arsénico/toxicidad , Sitios de Unión , Unión Competitiva , Eliminación de Gen , Biblioteca de Genes , Células HEK293 , Células HeLa , Calor , Humanos , Ligandos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Mutación Puntual , Proteína de la Leucemia Promielocítica/antagonistas & inhibidores , Proteína de la Leucemia Promielocítica/química , Proteína de la Leucemia Promielocítica/genética , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Sumoilación/efectos de los fármacos , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética
14.
Sci Rep ; 7(1): 1131, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28442745

RESUMEN

The mitophagy receptor Nix interacts with LC3/GABARAP proteins, targeting mitochondria into autophagosomes for degradation. Here we present evidence for phosphorylation-driven regulation of the Nix:LC3B interaction. Isothermal titration calorimetry and NMR indicate a ~100 fold enhanced affinity of the serine 34/35-phosphorylated Nix LC3-interacting region (LIR) to LC3B and formation of a very rigid complex compared to the non-phosphorylated sequence. Moreover, the crystal structure of LC3B in complex with the Nix LIR peptide containing glutamic acids as phosphomimetic residues and NMR experiments revealed that LIR phosphorylation stabilizes the Nix:LC3B complex via formation of two additional hydrogen bonds between phosphorylated serines of Nix LIR and Arg11, Lys49 and Lys51 in LC3B. Substitution of Lys51 to Ala in LC3B abrogates binding of a phosphomimetic Nix mutant. Functionally, serine 34/35 phosphorylation enhances autophagosome recruitment to mitochondria in HeLa cells. Together, this study provides cellular, biochemical and biophysical evidence that phosphorylation of the LIR domain of Nix enhances mitophagy receptor engagement.


Asunto(s)
Autofagia , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Calorimetría , Cristalografía por Rayos X , Células HeLa , Humanos , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/química , Proteínas Asociadas a Microtúbulos/química , Modelos Moleculares , Fosforilación , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas/química , Proteínas Supresoras de Tumor/química
15.
J Biol Chem ; 290(26): 16415-30, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25979334

RESUMEN

Low levels of reactive oxygen species (ROS) act as important signaling molecules, but in excess they can damage biomolecules. ROS regulation is therefore of key importance. Several polyphenols in general and flavonoids in particular have the potential to generate hydroxyl radicals, the most hazardous among all ROS. However, the generation of a hydroxyl radical and subsequent ROS formation can be prevented by methylation of the hydroxyl group of the flavonoids. O-Methylation is performed by O-methyltransferases, members of the S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase superfamily involved in the secondary metabolism of many species across all kingdoms. In the filamentous fungus Podospora anserina, a well established aging model, the O-methyltransferase (PaMTH1) was reported to accumulate in total and mitochondrial protein extracts during aging. In vitro functional studies revealed flavonoids and in particular myricetin as its potential substrate. The molecular architecture of PaMTH1 and the mechanism of the methyl transfer reaction remain unknown. Here, we report the crystal structures of PaMTH1 apoenzyme, PaMTH1-SAM (co-factor), and PaMTH1-S-adenosyl homocysteine (by-product) co-complexes refined to 2.0, 1.9, and 1.9 Å, respectively. PaMTH1 forms a tight dimer through swapping of the N termini. Each monomer adopts the Rossmann fold typical for many SAM-binding methyltransferases. Structural comparisons between different O-methyltransferases reveal a strikingly similar co-factor binding pocket but differences in the substrate binding pocket, indicating specific molecular determinants required for substrate selection. Furthermore, using NMR, mass spectrometry, and site-directed active site mutagenesis, we show that PaMTH1 catalyzes the transfer of the methyl group from SAM to one hydroxyl group of the myricetin in a cation-dependent manner.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Podospora/enzimología , S-Adenosilmetionina/metabolismo , Biofisica , Cristalografía por Rayos X , Flavonoides/química , Flavonoides/metabolismo , Proteínas Fúngicas/genética , Metiltransferasas/genética , Estrés Oxidativo , Podospora/química , Podospora/genética , Podospora/crecimiento & desarrollo
16.
Biochem J ; 454(3): 459-66, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23805866

RESUMEN

Selective autophagy is mediated by the interaction of autophagy modifiers and autophagy receptors that also bind to ubiquitinated cargo. Optineurin is an autophagy receptor that plays a role in the clearance of cytosolic Salmonella. The interaction between receptors and modifiers is often relatively weak, with typical values for the dissociation constant in the low micromolar range. The interaction of optineurin with autophagy modifiers is even weaker, but can be significantly enhanced through phosphorylation by the TBK1 {TANK [TRAF (tumour-necrosis-factor-receptor-associated factor)-associated nuclear factor κB activator]-binding kinase 1}. In the present study we describe the NMR and crystal structures of the autophagy modifier LC3B (microtubule-associated protein light chain 3 beta) in complex with the LC3 interaction region of optineurin either phosphorylated or bearing phospho-mimicking mutations. The structures show that the negative charge induced by phosphorylation is recognized by the side chains of Arg¹¹ and Lys5¹ in LC3B. Further mutational analysis suggests that the replacement of the canonical tryptophan residue side chain of autophagy receptors with the smaller phenylalanine side chain in optineurin significantly weakens its interaction with the autophagy modifier LC3B. Through phosphorylation of serine residues directly N-terminally located to the phenylalanine residue, the affinity is increased to the level normally seen for receptor-modifier interactions. Phosphorylation, therefore, acts as a switch for optineurin-based selective autophagy.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/química , Salmonella/fisiología , Factor de Transcripción TFIIIA/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Interacciones Huésped-Patógeno , Humanos , Enlace de Hidrógeno , Proteínas de Transporte de Membrana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Termodinámica , Factor de Transcripción TFIIIA/genética
17.
Science ; 333(6039): 228-33, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21617041

RESUMEN

Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms controlling their functions in vivo. In this work, we found that phosphorylation of an autophagy receptor, optineurin, promoted selective autophagy of ubiquitin-coated cytosolic Salmonella enterica. The protein kinase TANK binding kinase 1 (TBK1) phosphorylated optineurin on serine-177, enhancing LC3 binding affinity and autophagic clearance of cytosolic Salmonella. Conversely, ubiquitin- or LC3-binding optineurin mutants and silencing of optineurin or TBK1 impaired Salmonella autophagy, resulting in increased intracellular bacterial proliferation. We propose that phosphorylation of autophagy receptors might be a general mechanism for regulation of cargo-selective autophagy.


Asunto(s)
Autofagia , Citosol/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Factor de Transcripción TFIIIA/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Células HeLa , Humanos , Inmunidad Innata , Proteínas de Transporte de Membrana , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Salmonella typhimurium/inmunología , Proteína Sequestosoma-1 , Factor de Transcripción TFIIIA/química , Factor de Transcripción TFIIIA/genética , Ubiquitina/metabolismo
18.
Eur J Biochem ; 270(24): 4846-58, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14653811

RESUMEN

Heteronuclear high-resolution NMR spectroscopy was employed to determine the solution structure of the excisionase protein (Xis) from the lambda-like bacteriophage HK022 and to study its sequence-specific DNA interaction. As wild-type Xis was previously characterized as a generally unstable protein, a biologically active HK022 Xis mutant with a single amino acid substitution Cys28-->Ser was used in this work. This substitution has been shown to diminish the irreversibility of Xis denaturation and subsequent degradation, but does not affect the structural or thermodynamic properties of the protein, as evidenced by NMR and differential scanning calorimetry. The solution structure of HK022 Xis forms a compact, highly ordered protein core with two well-defined alpha-helices (residues 5-11 and 18-27) and five beta-strands (residues 2-4, 30-31, 35-36, 41-44 and 48-49). These data correlate well with 1H2O-2H2O exchange experiments and imply a different organization of the HK022 Xis secondary structure elements in comparison with the previously determined structure of the bacteriophage lambda excisionase. Superposition of both Xis structures indicates a better correspondence of the full-length HK022 Xis to the typical 'winged-helix' DNA-binding motif, as found, for example, in the DNA-binding domain of the Mu-phage repressor. Residues 51-72, which were not resolved in the lambda Xis, do not show any regular structure in HK022 Xis and thus appear to be completely disordered in solution. The resonance assignments have shown, however, that an unusual connectivity exists between residues Asn66 and Gly67 owing to asparagine-isoaspartyl isomerization. Such an isomerization has been previously observed and characterized only in eukaryotic proteins.


Asunto(s)
Bacteriófago HK022/enzimología , ADN Nucleotidiltransferasas/química , Proteínas Virales , Secuencias de Aminoácidos , Bacteriófago HK022/química , Rastreo Diferencial de Calorimetría , Cisteína/química , ADN/química , Concentración de Iones de Hidrógeno , Ácido Isoaspártico/química , Espectroscopía de Resonancia Magnética , Modelos Químicos , Modelos Moleculares , Mutación , Plásmidos/metabolismo , Prolina/química , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Serina/química , Temperatura , Termodinámica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA