Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cells ; 11(24)2022 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-36552881

RESUMEN

The PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aß42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aß42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aß42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Animales , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Astrocitos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Aprendizaje Espacial , Envejecimiento
2.
Stem Cell Res ; 48: 101968, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32911327

RESUMEN

A673T mutation in the amyloid precursor protein (APP) is a rare variant associated with a reduced risk of late-onset Alzheimer's disease (AD) and age-related cognitive decline. The A673T mutation decreases beta-amyloid (Aß) production and aggregation in neuronal cultures in vitro. Here we have identified a Finnish non-diseased male individual carrying a heterozygous A673T mutation, obtained a skin biopsy sample from him, and generated an iPSC line using commercially available integration-free Sendai virus-based kit. The established iPSC line retained the mutation, expressed pluripotency markers, had a normal karyotype, and differentiated into all three germ layers in vitro.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Heterocigoto , Humanos , Masculino , Mutación
3.
Front Mol Neurosci ; 10: 431, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311819

RESUMEN

The intercellular adhesion molecule-5 (ICAM-5) regulates neurite outgrowth and synaptic maturation. ICAM-5 overexpression in the hippocampal neurons induces filopodia formation in vitro. Since microglia are known to prune supernumerous synapses during development, we characterized the regulatory effect of ICAM-5 on microglia. ICAM-5 was released as a soluble protein from N-methyl-D-aspartic acid (NMDA)-treated neurons and bound by microglia. ICAM-5 promoted down-regulation of adhesion and phagocytosis in vitro. Microglia formed large cell clusters on ICAM-5-coated surfaces whereas they adhered and spread on the related molecule ICAM-1. ICAM-5 further reduced the secretion of the proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß), but on the contrary induced the secretion of the anti-inflammatory IL-10 from lipopolysaccharide (LPS) stimulated microglia. Thus, ICAM-5 might be involved in the regulation of microglia in both health and disease, playing an important neuroprotective role when the brain is under immune challenges and as a "don't-eat-me" signal when it is solubilized from active synapses.

4.
Neurobiol Dis ; 64: 16-29, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24345324

RESUMEN

Inflammation is a major mechanism of acute brain injury and chronic neurodegeneration. This neuroinflammation is known to be substantially regulated by the transcription factor NF-κB, which is predominantly found in the form of heterodimer of p65 (RelA) and p50 subunit, with p50/p50 homodimers being also common. The p65 subunit has a transactivation domain, whereas p50 is chiefly involved in DNA binding. Binding of the p65/p50 heterodimers is thought to induce expression of numerous proinflammatory genes in microglia. Here we show that cultured microglia deficient for the gene (Nfkb1) encoding p50 subunit show reduced induction of proinflammatory mediators, increased expression of anti-inflammatory genes, and increased expression of CD45, an immunoregulatory molecule, in response to lipopolysaccharide (LPS) exposure, but increased capacity to take up ß-amyloid (Aß) which is associated with enhanced release of tumor necrosis factor alpha (TNFα). However, Nfkb1 deficiency strongly increases leukocyte infiltration and the expression of proinflammatory genes in response to intrahippocampal administration of LPS. Also, when crossing Nfkb1 deficient mice with APdE9 transgenic mice the expression of proinflammatory genes was strongly enhanced, whereas Aß burden was slightly but significantly reduced. These alterations in expression of inflammatory mediators in Nfkb1 deficient mice were associated with reduced expression of CD45. Our data demonstrates a crucial and complex role p50 subunit of NF-κB in brain inflammation, especially in regulating the phenotype of microglia after acute and chronic inflammatory insults relevant to clinical conditions, contributing to both pro-inflammatory and anti-inflammatory responses of microglia, infiltration of leukocytes, and clearance of Aß in Alzheimer's disease.


Asunto(s)
Hipocampo/inmunología , Microglía/inmunología , Subunidad p50 de NF-kappa B/deficiencia , Subunidad p50 de NF-kappa B/fisiología , Enfermedad de Alzheimer/inmunología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica/inmunología , Humanos , Antígenos Comunes de Leucocito/metabolismo , Leucocitos/fisiología , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Subunidad p50 de NF-kappa B/genética , Fagocitosis/fisiología , Presenilina-1/genética , Presenilina-1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
J Cell Mol Med ; 16(5): 1060-73, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21777378

RESUMEN

Accumulation of amyloid ß (Aß) is a major hallmark in Alzheimer's disease (AD). Bone marrow derived monocytic cells (BMM) have been shown to reduce Aß burden in mouse models of AD, alleviating the AD pathology. BMM have been shown to be more efficient phagocytes in AD than the endogenous brain microglia. Because BMM have a natural tendency to infiltrate into the injured area, they could be regarded as optimal candidates for cell-based therapy in AD. In this study, we describe a method to obtain monocytic cells from BM-derived haematopoietic stem cells (HSC). Mouse or human HSC were isolated and differentiated in the presence of macrophage colony stimulating factor (MCSF). The cells were characterized by assessing the expression profile of monocyte markers and cytokine response to inflammatory stimulus. The phagocytic capacity was determined with Aß uptake assay in vitro and Aß degradation assay of natively formed Aß deposits ex vivo and in a transgenic APdE9 mouse model of AD in vivo. HSC were lentivirally transduced with enhanced green fluorescent protein (eGFP) to determine the effect of gene modification on the potential of HSC-derived cells for therapeutic purposes. HSC-derived monocytic cells (HSCM) displayed inflammatory responses comparable to microglia and peripheral monocytes. We also show that HSCM contributed to Aß reduction and could be genetically modified without compromising their function. These monocytic cells could be obtained from human BM or mobilized peripheral blood HSC, indicating a potential therapeutic relevance for AD.


Asunto(s)
Enfermedad de Alzheimer/terapia , Células Madre Hematopoyéticas/fisiología , Monocitos/fisiología , Monocitos/trasplante , Péptidos beta-Amiloides/metabolismo , Animales , Separación Celular , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/efectos de los fármacos , Fagocitosis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA