Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Antioxidants (Basel) ; 11(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36358499

RESUMEN

The challenge of sustainable agriculture is to increase yields and obtain higher quality products. Increased antioxidant compounds such as polyphenols in harvest products may be an added value for sustainable agriculture. The aim of the present study was to investigate whether three organic fertilization treatments with different levels of carbon and nitrogen, i.e., N-rich, N-rich+C, and N-poor+C, affected the phenolic content of different tomato varieties. The examined parameters were productivity, plant nutritional status, δ13C, and tomato phenolic content as an indication of the antioxidant capacity. The best production was obtained with 'Cornabel', a high-yielding Pebroter variety. The total phenolic content was highest in the traditional 'Cuban Pepper' variety regardless of treatment, while naringenin levels were high in all the Pebroter varieties. In N-poor+C fertilized plants, a lower N-NO3 content in leaves was correlated with higher levels of total polyphenols in the fruit. The high-water stress suffered by Montserrat varieties coincided with a low total phenolic content in the tomatoes. In conclusion, organic fertilization with reduced N did not influence the tomato yield but positively affected phenolic compound levels in varieties less sensitive to water stress.

2.
Antioxidants (Basel) ; 11(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36139723

RESUMEN

Nowadays, sweet potato (Ipomoea batata L.; Lam.) is considered a very interesting nutritive food because it is rich in complex carbohydrates, but as a tubercle, contains high amounts of health-promoting secondary metabolites. The aim of this review is to summarize the most recently published information on this root vegetable, focusing on its bioactive phytochemical constituents, potential effects on health, and the impact of processing technologies. Sweet potato is considered an excellent source of dietary carotenoids, and polysaccharides, whose health benefits include antioxidant, anti-inflammatory and hepatoprotective activity, cardiovascular protection, anticancer properties and improvement in neurological and memory capacity, metabolic disorders, and intestinal barrier function. Moreover, the purple sweet potato, due to its high anthocyanin content, represents a unique food option for consumers, as well as a potential source of functional ingredients for healthy food products. In this context, the effects of commercial processing and domestic cooking techniques on sweet potato bioactive compounds require further study to understand how to minimize their loss.

3.
Sci Total Environ ; 843: 157022, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35772528

RESUMEN

Biochar plays a key role in soil phosphorus (P) forms and distribution by affecting soil biochemical characteristics with relevant effects on the microbial community. In this study, we aimed to study the role of biochar in the variation of microbial community and P forms, and the relationships between soil properties, microbial community, and P forms. Here, we conducted a five-year field experiment NPK minerally fertilized with different application rates of biochar; control (B0, 0 kg ha-1 yr-1), low rate (B1500, 1500 kg ha-1 yr-1), medium rate (B3000, 3000 kg ha-1 yr-1), high rate (B6000, 6000 kg ha-1 yr-1). Our study showed that the highest increases in bacterial diversity and abundances coincided with increases in P forms typically retained in bacterial cells (ß-glucosidase, adenosine monophosphate-AMP, choline phosphate, and glucose-6 phosphate) and occurred at medium application rates. At low application rates, N2-fixing and P solubilizing and mineralizing bacteria (Sphingomonas, Haliangium, and Bradyrhizobium) increased. P forms retained in bacterial cells decreased at the highest application rates while the most stable forms such as DNA and inositol hexaphosphate (IHP), steadily increased. Stereoisomers of IHP derived from soil microbes (scyllo-IHP and D-chiro-IHP) accounted for the total IHP increases at high application rates. pH and available P and K and total P were highest at high biochar application rates whereas the proportion of organic P was reduced. The most relevant genus in such soils was Gemmatimonas, a polyphosphate accumulating and pyrogenic material degrading bacterium. Therefore, it appears that applying biochar at higher rates reduced the abundance of plant growth promoting bacteria while enhancing the abundance of P accumulating and pyrogenic degrading types.


Asunto(s)
Fósforo , Suelo , Bacterias , Carbón Orgánico/química , Fertilización , Suelo/química , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA