Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 11: 709972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395315

RESUMEN

Upon infection, Mycobacterium leprae, an obligate intracellular bacillus, induces accumulation of cholesterol-enriched lipid droplets (LDs) in Schwann cells (SCs). LDs are promptly recruited to M. leprae-containing phagosomes, and inhibition of this process decreases bacterial survival, suggesting that LD recruitment constitutes a mechanism by which host-derived lipids are delivered to intracellular M. leprae. We previously demonstrated that M. leprae has preserved only the capacity to oxidize cholesterol to cholestenone, the first step of the normal cholesterol catabolic pathway. In this study we investigated the biochemical relevance of cholesterol oxidation on bacterial pathogenesis in SCs. Firstly, we showed that M. leprae increases the uptake of LDL-cholesterol by infected SCs. Moreover, fluorescence microscopy analysis revealed a close association between M. leprae and the internalized LDL-cholesterol within the host cell. By using Mycobacterium smegmatis mutant strains complemented with M. leprae genes, we demonstrated that ml1942 coding for 3ß-hydroxysteroid dehydrogenase (3ß-HSD), but not ml0389 originally annotated as cholesterol oxidase (ChoD), was responsible for the cholesterol oxidation activity detected in M. leprae. The 3ß-HSD activity generates the electron donors NADH and NADPH that, respectively, fuel the M. leprae respiratory chain and provide reductive power for the biosynthesis of the dominant bacterial cell wall lipids phthiocerol dimycocerosate (PDIM) and phenolic glycolipid (PGL)-I. Inhibition of M. leprae 3ß-HSD activity with the 17ß-[N-(2,5-di-t-butylphenyl)carbamoyl]-6-azaandrost-4-en-3one (compound 1), decreased bacterial intracellular survival in SCs. In conclusion, our findings confirm the accumulation of cholesterol in infected SCs and its potential delivery to the intracellular bacterium. Furthermore, we provide strong evidence that cholesterol oxidation is an essential catabolic pathway for M. leprae pathogenicity and point to 3ß-HSD as a prime drug target that may be used in combination with current multidrug regimens to shorten leprosy treatment and ameliorate nerve damage.


Asunto(s)
Lepra , Mycobacterium leprae , Adenosina Trifosfato , Colesterol , Humanos , Lípidos
2.
Front Med (Lausanne) ; 5: 263, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30320113

RESUMEN

The AKR1B10 (aldo-keto reductase family 1 member B10) gene has important functions in carcinogen-induced neoplasia. AKR1B10 is also expressed in type 2 reaction leprosy patients (R2). We measured the expression of AKR1B10 in the skin lesions of patients with leprosy by immunohistochemistry from biopsies that encompassed the spectrum of types of leprosy, based on the Ridley and Jopling classification [10 samples each of tuberculoid (TT), borderline tuberculoid (BT), mid-borderline (BB), and borderline lepromatous (BL) lesions; four samples of lepromatous lesions (LL)], reactional leprosy [14 samples of type 1 Reaction (R1) and 10 samples of type 2 Reaction (R2)], and biopsies from 9 healthy control (HC) subjects. In addition, 46 lepromatous lesions (BL and LL), 45 lepromatous lesions in regression, and 115 R2 lesions were included. Eight of 10 R2 samples (80%), 3 of 46 active BL and LL samples (6%), 23 of 45 BL and LL samples in regression (51%), and 107 of 115 R2 samples (93%) were positive for AKR1B10, differing significantly between all groups (p < 0.05). AKR1B10 expression was highest in the cytoplasm of macrophages. Thus, AKR1B10 is overexpressed on the lepromatous side (BL and LL) in samples that are in regression, especially type 2 reaction-associated lesions, rendering it a potential marker of type 2 reactional episodes of leprosy and a target of drugs against reactional episodes.

3.
Front Immunol ; 8: 1035, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28970833

RESUMEN

Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is a major public health problem in poor and developing countries of the Americas, Africa, and Asia. MicroRNAs (miRNAs), which are small non-coding RNAs (18-24 nucleotides), play an important role in regulating cell and tissue homeostasis through translational downregulation of messenger RNAs (mRNAs). Deregulation of miRNA expression is important for the pathogenesis of various neoplastic and non-neoplastic diseases and has been the focus of many publications; however, studies on the expression of miRNAs in leprosy are rare. Herein, an extensive evaluation of differentially expressed miRNAs was performed on leprosy skin lesions using microarrays. Leprosy patients, classified according to Ridley and Jopling's classification or reactional states (R1 and R2), and healthy controls (HCs) were included. Punch biopsies were collected from the borders of leprosy lesions (10 tuberculoid, 10 borderline tuberculoid, 10 borderline borderline, 10 borderline lepromatous, 4 lepromatous, 14 R1, and 9 R2) and from 9 HCs. miRNA expression profiles were obtained using the Agilent Microarray platform with miRBase, which consists of 1,368 Homo sapiens (hsa)-miRNA candidates. TaqMan quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) was used to validate differentially expressed miRNAs. Sixty-four differentially expressed miRNAs, including 50 upregulated and 14 downregulated (fold change ≥2.0, p-value ≤ 0.05) were identified after comparing samples from patients to those of controls. Twenty differentially expressed miRNAs were identified exclusively in the reactional samples (14 type 1 and 6 type 2). Eight miRNAs were validated by RT-PCR, including seven upregulated (hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-146b-5p, hsa-miR-342-3p, hsa-miR-361-3p, hsa-miR-3653, and hsa-miR-484) and one downregulated (hsa-miR-1290). These miRNAs were differentially expressed in leprosy and several other diseases, especially those related to the immune response. Moreover, the integration of analysis of validated mi/mRNAs obtained from the same samples allowed target pairs opposite expression pattern of hsa-miRNA-142-3p and AKR1B10, hsa-miRNA-342-3p and FAM180b, and hsa-miRNA-484 and FASN. This study identified several miRNAs that might play an important role in the molecular pathogenesis of the disease. Moreover, these deregulated miRNAs and their respective signaling pathways might be useful as therapeutic markers, therapeutic targets, which could help in the development of drugs to treat leprosy.

4.
PLoS One ; 12(5): e0177815, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28505186

RESUMEN

Mycobacterium leprae (M. leprae) infection causes nerve damage and the condition worsens often during and long after treatment. Clearance of bacterial antigens including lipoarabinomannan (LAM) during and after treatment in leprosy patients is slow. We previously demonstrated that M. leprae LAM damages peripheral nerves by in situ generation of the membrane attack complex (MAC). Investigating the role of complement activation in skin lesions of leprosy patients might provide insight into the dynamics of in situ immune reactivity and the destructive pathology of M. leprae. In this study, we analyzed in skin lesions of leprosy patients, whether M. leprae antigen LAM deposition correlates with the deposition of complement activation products MAC and C3d on nerves and cells in the surrounding tissue. Skin biopsies of paucibacillary (n = 7), multibacillary leprosy patients (n = 7), and patients with erythema nodosum leprosum (ENL) (n = 6) or reversal reaction (RR) (n = 4) and controls (n = 5) were analyzed. The percentage of C3d, MAC and LAM deposition was significantly higher in the skin biopsies of multibacillary compared to paucibacillary patients (p = <0.05, p = <0.001 and p = <0.001 respectively), with a significant association between LAM and C3d or MAC in the skin biopsies of leprosy patients (r = 0.9578, p< 0.0001 and r = 0.8585, p<0.0001 respectively). In skin lesions of multibacillary patients, MAC deposition was found on axons and co-localizing with LAM. In skin lesions of paucibacillary patients, we found C3d positive T-cells in and surrounding granulomas, but hardly any MAC deposition. In addition, MAC immunoreactivity was increased in both ENL and RR skin lesions compared to non-reactional leprosy patients (p = <0.01 and p = <0.01 respectively). The present findings demonstrate that complement is deposited in skin lesions of leprosy patients, suggesting that inflammation driven by complement activation might contribute to nerve damage in the lesions of these patients. This should be regarded as an important factor in M. leprae nerve damage pathology.


Asunto(s)
Activación de Complemento/inmunología , Lepra/inmunología , Lepra/patología , Enfermedades de la Piel/inmunología , Enfermedades de la Piel/patología , Linfocitos T/inmunología , Adolescente , Adulto , Carga Bacteriana , Biomarcadores , Biopsia , Niño , Complemento C3d/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Femenino , Granuloma/inmunología , Granuloma/metabolismo , Granuloma/patología , Humanos , Inmunohistoquímica , Lepra/microbiología , Lipopolisacáridos , Masculino , Persona de Mediana Edad , Linfocitos T/metabolismo , Adulto Joven
5.
Acta Neuropathol ; 129(5): 653-67, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25772973

RESUMEN

Peripheral nerve damage is the hallmark of leprosy pathology but its etiology is unclear. We previously identified the membrane attack complex (MAC) of the complement system as a key determinant of post-traumatic nerve damage and demonstrated that its inhibition is neuroprotective. Here, we determined the contribution of the MAC to nerve damage caused by Mycobacterium leprae and its components in mouse. Furthermore, we studied the association between MAC and the key M. leprae component lipoarabinomannan (LAM) in nerve biopsies of leprosy patients. Intraneural injections of M. leprae sonicate induced MAC deposition and pathological changes in the mouse nerve, whereas MAC inhibition preserved myelin and axons. Complement activation occurred mainly via the lectin pathway and the principal activator was LAM. In leprosy nerves, the extent of LAM and MAC immunoreactivity was robust and significantly higher in multibacillary compared to paucibacillary donors (p = 0.01 and p = 0.001, respectively), with a highly significant association between LAM and MAC in the diseased samples (r = 0.9601, p = 0.0001). Further, MAC co-localized with LAM on axons, pointing to a role for this M. leprae antigen in complement activation and nerve damage in leprosy. Our findings demonstrate that MAC contributes to nerve damage in a model of M. leprae-induced nerve injury and its inhibition is neuroprotective. In addition, our data identified LAM as the key pathogen associated molecule that activates complement and causes nerve damage. Taken together our data imply an important role of complement in nerve damage in leprosy and may inform the development of novel therapeutics for patients.


Asunto(s)
Activación de Complemento/efectos de los fármacos , Complejo de Ataque a Membrana del Sistema Complemento/toxicidad , Lepra/patología , Lipopolisacáridos/toxicidad , Mycobacterium leprae/patogenicidad , Traumatismos del Sistema Nervioso/microbiología , Animales , Animales no Consanguíneos , Axones/efectos de los fármacos , Axones/microbiología , Axones/patología , Biopsia , Activación de Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Femenino , Humanos , Lepra/metabolismo , Lepra/microbiología , Ratones , Mycobacterium leprae/química , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/microbiología , Vaina de Mielina/patología , Traumatismos del Sistema Nervioso/inmunología , Traumatismos del Sistema Nervioso/patología
6.
PLoS Negl Trop Dis ; 8(9): e3099, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25187983

RESUMEN

Mycobacterium leprae infects macrophages and Schwann cells inducing a gene expression program to facilitate its replication and progression to disease. MicroRNAs (miRNAs) are key regulators of gene expression and could be involved during the infection. To address the genetic influence of miRNAs in leprosy, we enrolled 1,098 individuals and conducted a case-control analysis in order to study four miRNAs genes containing single nucleotide polymorphism (miRSNP). We tested miRSNP-125a (rs12975333 G>T), miRSNP-223 (rs34952329 *>T), miRSNP-196a-2 (rs11614913 C>T) and miRSNP-146a (rs2910164 G>C). Amongst them, miRSNP-146a was the unique gene associated with risk to leprosy per se (GC OR = 1.44, p = 0.04; CC OR = 2.18, p = 0.0091). We replicated this finding showing that the C-allele was over-transmitted (p = 0.003) using a transmission-disequilibrium test. A functional analysis revealed that live M. leprae (MOI 100:1) was able to induce miR-146a expression in THP-1 (p<0.05). Furthermore, pure neural leprosy biopsies expressed augmented levels of that miRNA as compared to biopsy samples from neuropathies not related with leprosy (p = 0.001). Interestingly, carriers of the risk variant (C-allele) produce higher levels of mature miR-146a in nerves (p = 0.04). From skin biopsies, although we observed augmented levels of miR-146a, we were not able to correlate it with a particular clinical form or neither host genotype. MiR-146a is known to modulate TNF levels, thus we assessed TNF expression (nerve biopsies) and released by peripheral blood mononuclear cells infected with BCG Moreau. In both cases lower TNF levels correlates with subjects carrying the risk C-allele, (p = 0.0453 and p = 0.0352; respectively), which is consistent with an immunomodulatory role of this miRNA in leprosy.


Asunto(s)
Alelos , Predisposición Genética a la Enfermedad , Lepra/genética , Leucocitos Mononucleares/metabolismo , MicroARNs/metabolismo , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Genotipo , Heterocigoto , Humanos , MicroARNs/genética
7.
Cell Microbiol ; 16(6): 797-815, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24552180

RESUMEN

We recently showed that Mycobacterium leprae (ML) is able to induce lipid droplet formation in infected macrophages. We herein confirm that cholesterol (Cho) is one of the host lipid molecules that accumulate in ML-infected macrophages and investigate the effects of ML on cellular Cho metabolism responsible for its accumulation. The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions. Moreover, higher levels of the active form of the sterol regulatory element-binding protein (SREBP) transcriptional factors, key regulators of the biosynthesis and uptake of cellular Cho, were found in LL skin biopsies. Functional in vitro assays confirmed the higher capacity of ML-infected macrophages to synthesize Cho and sequester exogenous LDL-Cho. Notably, Cho colocalized to ML-containing phagosomes, and Cho metabolism impairment, through either de novo synthesis inhibition by statins or depletion of exogenous Cho, decreased intracellular bacterial survival. These findings highlight the importance of metabolic integration between the host and bacteria to leprosy pathophysiology, opening new avenues for novel therapeutic strategies to leprosy.


Asunto(s)
Colesterol/metabolismo , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Viabilidad Microbiana , Mycobacterium leprae/fisiología , Fagosomas/microbiología , Animales , Western Blotting , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Lepra/tratamiento farmacológico , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Fagosomas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de LDL/biosíntesis , Receptores de LDL/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética
8.
Clin Vaccine Immunol ; 15(1): 164-7, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17959822

RESUMEN

Antibodies in the sera of patients with lacaziosis recognized an approximately 193-kDa antigen and other Lacazia loboi antigens. Paracoccidioides brasiliensis gp43 antigen was detected by all evaluated sera, but they failed to detect a protein with the same molecular mass in L. loboi extracts. This study is the first to examine the humoral response to L. loboi antigens by using multiple host sera.


Asunto(s)
Antígenos Fúngicos/sangre , Western Blotting/métodos , Micosis/sangre , Onygenales/inmunología , Animales , Anticuerpos Antifúngicos/inmunología , Anticuerpos Antifúngicos/aislamiento & purificación , Antígenos Fúngicos/inmunología , Antígenos Fúngicos/aislamiento & purificación , Delfín Mular , Proteínas Fúngicas/sangre , Proteínas Fúngicas/inmunología , Glicoproteínas/sangre , Glicoproteínas/inmunología , Humanos , Inmunoglobulina G/inmunología , Ratones , Micosis/diagnóstico , Micosis/inmunología , Onygenales/aislamiento & purificación , Paracoccidioides/inmunología , Paracoccidioides/aislamiento & purificación , Paracoccidioidomicosis/sangre , Paracoccidioidomicosis/diagnóstico , Paracoccidioidomicosis/microbiología
9.
J Clin Microbiol ; 43(8): 3657-61, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16081893

RESUMEN

Lacazia loboi is an uncultivated fungal pathogen of humans and dolphins that causes cutaneous and subcutaneous infections only in the tropical areas of the Americas. It was recently found by phylogenetic analysis that this unusual pathogen is closely related to Paracoccidioides brasiliensis and to the other fungal dimorphic members of the order Onygenales. That original phylogenetic study used universal primers to amplify well-known genes. However, this approach cannot be applied to the study of other proteins. We have developed a strategy for studying the gene encoding the gp43 homologous protein of P. brasiliensis in L. loboi. The gp43 protein was selected because it has been found that this P. brasiliensis antigen strongly reacts when it is used to test sera from patients with lacaziosis. The principle behind this idea was to obtain the gp43 amino acid sequence of P. brasiliensis and other homologous fungal sequences from GenBank and design primers from their aligned conserved regions. These sets of primers were used to amplify the selected regions with genomic DNA extracted from the yeast-like cells of L. loboi from experimentally infected mice. Using this approach, we amplified 483 bp of the L. loboi gp43-like gene. These sequences had 85% identity at the nucleotide level and 75% identity with the deduced amino acid sequences of the P. brasiliensis gp43 protein. The identity of the 483-bp DNA fragment was confirmed by phylogenetic analysis. This analysis revealed that the L. loboi gp43-like deduced amino acid sequence formed a strongly supported (100%) sister group with several P. brasiliensis gp43 sequences and that this taxon in turn was linked to the other fungal sequences used in this analysis. This study shows that the use of a molecular model for investigation of the genes encoding important proteins in L. loboi is feasible.


Asunto(s)
Antígenos Fúngicos/genética , Proteínas Fúngicas/genética , Glicoproteínas/genética , Paracoccidioides/clasificación , Paracoccidioides/genética , Secuencia de Aminoácidos , Animales , Antígenos Fúngicos/química , Proteínas Fúngicas/química , Glicoproteínas/química , Ratones , Datos de Secuencia Molecular , Paracoccidioidomicosis/patología , Filogenia , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA