Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33531347

RESUMEN

Cell-cell adhesions are often subjected to mechanical strains of different rates and magnitudes in normal tissue function. However, the rate-dependent mechanical behavior of individual cell-cell adhesions has not been fully characterized due to the lack of proper experimental techniques and therefore remains elusive. This is particularly true under large strain conditions, which may potentially lead to cell-cell adhesion dissociation and ultimately tissue fracture. In this study, we designed and fabricated a single-cell adhesion micro tensile tester (SCAµTT) using two-photon polymerization and performed displacement-controlled tensile tests of individual pairs of adherent epithelial cells with a mature cell-cell adhesion. Straining the cytoskeleton-cell adhesion complex system reveals a passive shear-thinning viscoelastic behavior and a rate-dependent active stress-relaxation mechanism mediated by cytoskeleton growth. Under low strain rates, stress relaxation mediated by the cytoskeleton can effectively relax junctional stress buildup and prevent adhesion bond rupture. Cadherin bond dissociation also exhibits rate-dependent strengthening, in which increased strain rate results in elevated stress levels at which cadherin bonds fail. This bond dissociation becomes a synchronized catastrophic event that leads to junction fracture at high strain rates. Even at high strain rates, a single cell-cell junction displays a remarkable tensile strength to sustain a strain as much as 200% before complete junction rupture. Collectively, the platform and the biophysical understandings in this study are expected to build a foundation for the mechanistic investigation of the adaptive viscoelasticity of the cell-cell junction.


Asunto(s)
Uniones Intercelulares/metabolismo , Estrés Mecánico , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Citoesqueleto/metabolismo , Elasticidad , Humanos , Uniones Intercelulares/química , Viscosidad
2.
Biosens Bioelectron ; 179: 113086, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33636499

RESUMEN

The occurrence and development of many diseases are accompanied and sometimes dictated by the destruction of biomechanical homeostasis. For instance, cancer cells and normal cells show different cellular mechanical forces phenotypes, as the proliferation and invasion ability of cancer cells is often related to the changes in mechanical force in the tumor. With single cell analysis, variations in mechanics within a cell population can be detected and analyzed, opening new dimensions in the study of cancer. Nanosensor design for interrogation of cell mechanics is an interdisciplinary area bridging over cell biology, mechanics, and micro/nanotechnology. In this tutorial review, we give insight into the background and technical innovation of currently available methods for mechanical analysis of cells. First, we discuss the mechanism of mechanical changes in the development and progression of cancer that shows the feasibility of mechanical sensors in cancer cell detection. Next, we summarize the principle, progress, and essential problems of common technologies for cell force measurement, including single molecule force spectroscopy and elastic substrate-sensors. Following that, we discuss novel micro and nano-scale mechanical sensors and their applications in single cell level biological analysis. At last, we elaborate on the remaining issues and trends of the cellular mechanical sensors.


Asunto(s)
Técnicas Biosensibles , Fenómenos Mecánicos , Nanotecnología , Análisis de la Célula Individual , Estrés Mecánico
3.
Tissue Eng Part C Methods ; 25(11): 631-640, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31407627

RESUMEN

Cell-cell adhesion complexes are macromolecular adhesive organelles that integrate cells into tissues. This mechanochemical coupling in cell-cell adhesion is required for a large number of cell behaviors, and perturbations of the cell-cell adhesion structure or related mechanotransduction pathways can lead to critical pathological conditions such as skin and heart diseases, arthritis, and cancer. Mechanical stretching has been a widely used method to stimulate the mechanotransduction process originating from the cell-cell adhesion and cell-extracellular matrix (ECM) complexes. These studies aimed to reveal the biophysical processes governing cell proliferation, wound healing, gene expression regulation, and cell differentiation in various tissues, including cardiac, muscle, vascular, and bone. This review explores techniques in mechanical stretching in two-dimensional settings with different stretching regimens on different cell types. The mechanotransduction responses from these different cell types will be discussed with an emphasis on their biophysical transformations during mechanical stretching and the cross talk between the cell-cell and cell-ECM adhesion complexes. Therapeutic aspects of mechanical stretching are reviewed considering these cellular responses after the application of mechanical forces, with a focus on wound healing and tissue regeneration. Impact Statement Mechanical stretching has been proposed as a therapeutic option for tissue regeneration and wound healing. It has been accepted that mechanotransduction processes elicited by mechanical stretching govern cellular response and behavior, and these studies have predominantly focused on the cell-extracellular matrix (ECM) sites. This review serves the mechanobiology community by shifting the focus of mechanical stretching effects from cell-ECM adhesions to the less examined cell-cell adhesions, which we believe play an equally important role in orchestrating the response pathways.


Asunto(s)
Regeneración/fisiología , Estrés Mecánico , Uniones Adherentes/metabolismo , Animales , Adhesión Celular , Desmosomas/metabolismo , Enfermedad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA