Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732071

RESUMEN

Iron regulatory proteins (IRP1 and IRP2) are the master regulators of mammalian iron homeostasis. They bind to the iron-responsive elements (IREs) of the transcripts of iron-related genes to regulate their expression, thereby maintaining cellular iron availability. The primary method to measure the IRE-binding activity of IRPs is the electrophoresis mobility shift assay (EMSA). This method is particularly useful for evaluating IRP1 activity, since IRP1 is a bifunctional enzyme and its protein levels remain similar during conversion between the IRE-binding protein and cytosolic aconitase forms. Here, we exploited a method of using a biotinylated-IRE probe to separate IRE-binding IRPs followed by immunoblotting to analyze the IRE-binding activity. This method allows for the successful measurement of IRP activity in cultured cells and mouse tissues under various iron conditions. By separating IRE-binding IRPs from the rest of the lysates, this method increases the specificity of IRP antibodies and verifies whether a band represents an IRP, thereby revealing some previously unrecognized information about IRPs. With this method, we showed that the S711-phosphorylated IRP1 was found only in the IRE-binding form in PMA-treated Hep3B cells. Second, we found a truncated IRE-binding IRP2 isoform that is generated by proteolytic cleavage on sites in the 73aa insert region of the IRP2 protein. Third, we found that higher levels of SDS, compared to 1-2% SDS in regular loading buffer, could dramatically increase the band intensity of IRPs in immunoblots, especially in HL-60 cells. Fourth, we found that the addition of SDS or LDS to cell lysates activated protein degradation at 37 °C or room temperature, especially in HL-60 cell lysates. As this method is more practical, sensitive, and cost-effective, we believe that its application will enhance future research on iron regulation and metabolism.


Asunto(s)
Proteína 1 Reguladora de Hierro , Hierro , Humanos , Animales , Hierro/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Proteína 1 Reguladora de Hierro/genética , Ratones , Proteína 2 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/genética , Biotinilación , Elementos de Respuesta , Fosforilación , Proteínas Reguladoras del Hierro/metabolismo , Proteínas Reguladoras del Hierro/genética , Unión Proteica , Línea Celular Tumoral
2.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599324

RESUMEN

Viruses have evolved complex mechanisms to exploit host factors for replication and assembly. In response, host cells have developed strategies to block viruses, engaging in a continuous co-evolutionary battle. This dynamic interaction often revolves around the competition for essential resources necessary for both host cell and virus replication. Notably, iron, required for the biosynthesis of several cofactors, including iron­sulfur (FeS) clusters, represents a critical element in the ongoing competition for resources between infectious agents and host. Although several recent studies have identified FeS cofactors at the core of virus replication machineries, our understanding of their specific roles and the cellular processes responsible for their incorporation into viral proteins remains limited. This review aims to consolidate our current knowledge of viral components that have been characterized as FeS proteins and elucidate how viruses harness these versatile cofactors to their benefit. Its objective is also to propose that viruses may depend on incorporation of FeS cofactors more extensively than is currently known. This has the potential to revolutionize our understanding of viral replication, thereby carrying significant implications for the development of strategies to target infections.


Asunto(s)
Proteínas Hierro-Azufre , Proteínas Virales , Replicación Viral , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Humanos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Virus/metabolismo , Virus/genética , Virosis/metabolismo , Virosis/virología , Hierro/metabolismo , Animales , Interacciones Huésped-Patógeno
3.
Proc Natl Acad Sci U S A ; 120(33): e2303860120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552760

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, uses an RNA-dependent RNA polymerase along with several accessory factors to replicate its genome and transcribe its genes. Nonstructural protein (nsp) 13 is a helicase required for viral replication. Here, we found that nsp13 ligates iron, in addition to zinc, when purified anoxically. Using inductively coupled plasma mass spectrometry, UV-visible absorption, EPR, and Mössbauer spectroscopies, we characterized nsp13 as an iron-sulfur (Fe-S) protein that ligates an Fe4S4 cluster in the treble-clef metal-binding site of its zinc-binding domain. The Fe-S cluster in nsp13 modulates both its binding to the template RNA and its unwinding activity. Exposure of the protein to the stable nitroxide TEMPOL oxidizes and degrades the cluster and drastically diminishes unwinding activity. Thus, optimal function of nsp13 depends on a labile Fe-S cluster that is potentially targetable for COVID-19 treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Tratamiento Farmacológico de COVID-19 , ADN Helicasas/metabolismo , ARN , Azufre , Proteínas no Estructurales Virales/metabolismo , ARN Helicasas/genética
4.
Nat Commun ; 14(1): 5114, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607904

RESUMEN

M1 macrophages enter a glycolytic state when endogenous nitric oxide (NO) reprograms mitochondrial metabolism by limiting aconitase 2 and pyruvate dehydrogenase (PDH) activity. Here, we provide evidence that NO targets the PDH complex by using lipoate to generate nitroxyl (HNO). PDH E2-associated lipoate is modified in NO-rich macrophages while the PDH E3 enzyme, also known as dihydrolipoamide dehydrogenase (DLD), is irreversibly inhibited. Mechanistically, we show that lipoate facilitates NO-mediated production of HNO, which interacts with thiols forming irreversible modifications including sulfinamide. In addition, we reveal a macrophage signature of proteins with reduction-resistant modifications, including in DLD, and identify potential HNO targets. Consistently, DLD enzyme is modified in an HNO-dependent manner at Cys477 and Cys484, and molecular modeling and mutagenesis show these modifications impair the formation of DLD homodimers. In conclusion, our work demonstrates that HNO is produced physiologically. Moreover, the production of HNO is dependent on the lipoate-rich PDH complex facilitating irreversible modifications that are critical to NO-dependent metabolic rewiring.


Asunto(s)
Óxido Nítrico , Óxidos de Nitrógeno , Macrófagos , Complejo Piruvato Deshidrogenasa , Oxidorreductasas , Piruvatos
5.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35562883

RESUMEN

Iron homeostasis disruption has increasingly been implicated in various neurological disorders. In this review, we present an overview of our current understanding of iron metabolism in the central nervous system. We examine the consequences of both iron accumulation and deficiency in various disease contexts including neurodegenerative, neurodevelopmental, and neuropsychological disorders. The history of animal models of iron metabolism misregulation is also discussed followed by a comparison of three patients with a newly discovered neurodegenerative disorder caused by mutations in iron regulatory protein 2.


Asunto(s)
Trastornos del Metabolismo del Hierro , Enfermedades Neurodegenerativas , Animales , Sistema Nervioso Central/metabolismo , Homeostasis , Humanos , Hierro/metabolismo , Trastornos del Metabolismo del Hierro/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Enfermedades Neurodegenerativas/metabolismo
6.
Brain Commun ; 4(3): fcac102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602653

RESUMEN

Altered brain iron homeostasis can contribute to neurodegeneration by interfering with the delivery of the iron needed to support key cellular processes, including mitochondrial respiration, synthesis of myelin and essential neurotransmitters. Intracellular iron homeostasis in mammals is maintained by two homologous ubiquitously expressed iron-responsive element-binding proteins (IRP1 and IRP2). Using exome sequencing, two patients with severe neurodegenerative disease and bi-allelic mutations in the gene IREB2 were first identified and clinically characterized in 2019. Here, we report the case of a 7-year-old male patient with compound heterozygous missense variants in IREB2, whose neurological features resembled those of the two previously reported IRP2-deficient patients, including a profound global neurodevelopmental delay and dystonia. Biochemical characterization of a lymphoblast cell line derived from the patient revealed functional iron deficiency, altered post-transcriptional regulation of iron metabolism genes and mitochondrial dysfunction. The iron metabolism abnormalities of the patient cell line were reversed by lentiviral-mediated restoration of IREB2 expression. These results, in addition to confirming the essential role of IRP2 in the regulation of iron metabolism in humans, expand the scope of the known IRP2-related neurodegenerative disorders and underscore that IREB2 pathological variants may impact the iron-responsive element-binding activity of IRP2 with varying degrees of severity. The three severely affected patients identified so far all suffered from complete loss of function of IRP2, raising the possibility that individuals with significant but incomplete loss of IRP2 function may develop less severe forms of the disease, analogous to other human conditions that present with a wide range of phenotypic manifestations.

9.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34593646

RESUMEN

Iron is an essential biometal, but is toxic if it exists in excess. Therefore, iron content is tightly regulated at cellular and systemic levels to meet metabolic demands but to avoid toxicity. We have recently reported that adaptive thermogenesis, a critical metabolic pathway to maintain whole-body energy homeostasis, is an iron-demanding process for rapid biogenesis of mitochondria. However, little information is available on iron mobilization from storage sites to thermogenic fat. This study aimed to determine the iron-regulatory network that underlies beige adipogenesis. We hypothesized that thermogenic stimulus initiates the signaling interplay between adipocyte iron demands and systemic iron liberation, resulting in iron redistribution into beige fat. To test this hypothesis, we induced reversible activation of beige adipogenesis in C57BL/6 mice by administering a ß3-adrenoreceptor agonist CL 316,243 (CL). Our results revealed that CL stimulation induced the iron-regulatory protein-mediated iron import into adipocytes, suppressed hepcidin transcription, and mobilized iron from the spleen. Mechanistically, CL stimulation induced an acute activation of hypoxia-inducible factor 2-α (HIF2-α), erythropoietin production, and splenic erythroid maturation, leading to hepcidin suppression. Disruption of systemic iron homeostasis by pharmacological HIF2-α inhibitor PT2385 or exogenous administration of hepcidin-25 significantly impaired beige fat development. Our findings suggest that securing iron availability via coordinated interplay between renal hypoxia and hepcidin down-regulation is a fundamental mechanism to activate adaptive thermogenesis. It also provides an insight into the effects of adaptive thermogenesis on systemic iron mobilization and redistribution.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hepcidinas/metabolismo , Hierro/metabolismo , Termogénesis/fisiología , Adipocitos/metabolismo , Adipocitos Beige/metabolismo , Adipogénesis/fisiología , Tejido Adiposo Beige/metabolismo , Animales , Regulación hacia Abajo/fisiología , Eritropoyetina/metabolismo , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Transducción de Señal/fisiología
10.
Semin Hematol ; 58(3): 161-174, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34389108

RESUMEN

To maintain an adequate iron supply for hemoglobin synthesis and essential metabolic functions while counteracting iron toxicity, humans and other vertebrates have evolved effective mechanisms to conserve and finely regulate iron concentration, storage, and distribution to tissues. At the systemic level, the iron-regulatory hormone hepcidin is secreted by the liver in response to serum iron levels and inflammation. Hepcidin regulates the expression of the sole known mammalian iron exporter, ferroportin, to control dietary absorption, storage and tissue distribution of iron. At the cellular level, iron regulatory proteins 1 and 2 (IRP1 and IRP2) register cytosolic iron concentrations and post-transcriptionally regulate the expression of iron metabolism genes to optimize iron availability for essential cellular processes, including heme biosynthesis and iron-sulfur cluster biogenesis. Genetic malfunctions affecting the iron sensing mechanisms or the main pathways that utilize iron in the cell cause a broad range of human diseases, some of which are characterized by mitochondrial iron accumulation. This review will discuss the mechanisms of systemic and cellular iron sensing with a focus on the main iron utilization pathways in the cell, and on human conditions that arise from compromised function of the regulatory axes that control iron homeostasis.


Asunto(s)
Eritropoyesis , Hierro , Animales , Homeostasis , Humanos , Hierro/metabolismo , Mamíferos/metabolismo
11.
Sci Signal ; 14(664)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402335

RESUMEN

Understanding the mechanisms of the Warburg shift to aerobic glycolysis is critical to defining the metabolic basis of cancer. Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an aggressive cancer characterized by biallelic inactivation of the gene encoding the Krebs cycle enzyme fumarate hydratase, an early shift to aerobic glycolysis, and rapid metastasis. We observed impairment of the mitochondrial respiratory chain in tumors from patients with HLRCC. Biochemical and transcriptomic analyses revealed that respiratory chain dysfunction in the tumors was due to loss of expression of mitochondrial DNA (mtDNA)-encoded subunits of respiratory chain complexes, caused by a marked decrease in mtDNA content and increased mtDNA mutations. We demonstrated that accumulation of fumarate in HLRCC tumors inactivated the core factors responsible for replication and proofreading of mtDNA, leading to loss of respiratory chain components, thereby promoting the shift to aerobic glycolysis and disease progression in this prototypic model of glucose-dependent human cancer.


Asunto(s)
Carcinoma de Células Renales/genética , Ciclo del Ácido Cítrico , Daño del ADN , ADN Mitocondrial/metabolismo , Fumarato Hidratasa/genética , Neoplasias Renales/genética , Leiomiomatosis/enzimología , Síndromes Neoplásicos Hereditarios/enzimología , Neoplasias Cutáneas/enzimología , Neoplasias Uterinas/enzimología , Adulto , Anciano , Carcinoma de Células Renales/etiología , Carcinoma de Células Renales/metabolismo , Reparación del ADN , Replicación del ADN , Femenino , Fumarato Hidratasa/deficiencia , Perfilación de la Expresión Génica , Humanos , Neoplasias Renales/etiología , Neoplasias Renales/metabolismo , Leiomiomatosis/complicaciones , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Síndromes Neoplásicos Hereditarios/complicaciones , Neoplasias Cutáneas/complicaciones , Neoplasias Uterinas/complicaciones , Adulto Joven
12.
Blood ; 137(18): 2509-2519, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33512384

RESUMEN

Polycythemia and pulmonary hypertension are 2 human diseases for which better therapies are needed. Upregulation of hypoxia-inducible factor-2α (HIF-2α) and its target genes, erythropoietin (EPO) and endothelin-1, causes polycythemia and pulmonary hypertension in patients with Chuvash polycythemia who are homozygous for the R200W mutation in the von Hippel Lindau (VHL) gene and in a murine mouse model of Chuvash polycythemia that bears the same homozygous VhlR200W mutation. Moreover, the aged VhlR200W mice developed pulmonary fibrosis, most likely due to the increased expression of Cxcl-12, another Hif-2α target. Patients with mutations in iron regulatory protein 1 (IRP1) also develop polycythemia, and Irp1-knockout (Irp1-KO) mice exhibit polycythemia, pulmonary hypertension, and cardiac fibrosis attributable to translational derepression of Hif-2α, and the resultant high expression of the Hif-2α targets EPO, endothelin-1, and Cxcl-12. In this study, we inactivated Hif-2α with the second-generation allosteric HIF-2α inhibitor MK-6482 in VhlR200W, Irp1-KO, and double-mutant VhlR200W;Irp1-KO mice. MK-6482 treatment decreased EPO production and reversed polycythemia in all 3 mouse models. Drug treatment also decreased right ventricular pressure and mitigated pulmonary hypertension in VhlR200W, Irp1-KO, and VhlR200W;Irp1-KO mice to near normal wild-type levels and normalized the movement of the cardiac interventricular septum in VhlR200Wmice. MK-6482 treatment reduced the increased expression of Cxcl-12, which, in association with CXCR4, mediates fibrocyte influx into the lungs, potentially causing pulmonary fibrosis. Our results suggest that oral intake of MK-6482 could represent a new approach to treatment of patients with polycythemia, pulmonary hypertension, pulmonary fibrosis, and complications caused by elevated expression of HIF-2α.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Regulación de la Expresión Génica/efectos de los fármacos , Hipertensión Pulmonar/prevención & control , Proteína 1 Reguladora de Hierro/fisiología , Policitemia/prevención & control , Sulfonas/farmacología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/fisiología , Animales , Endotelina-1/antagonistas & inhibidores , Endotelina-1/genética , Endotelina-1/metabolismo , Eritropoyetina/antagonistas & inhibidores , Eritropoyetina/genética , Eritropoyetina/metabolismo , Femenino , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Policitemia/etiología , Policitemia/metabolismo , Policitemia/patología
13.
Mol Cell ; 78(1): 1-3, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32243827

RESUMEN

In this issue of Molecular Cell, Wang et al. (2020) discover that the C-terminal substrate-binding domain of FBXL5 contains a redox-sensitive [2Fe-2S] cluster that, upon oxidation, promotes FBXL5 binding to IRP2 to effect its oxygen-dependent degradation, unveiling a novel and previously unrecognized mechanism involved in regulation of cellular iron homeostasis.


Asunto(s)
Hierro , Oxígeno , Proteínas F-Box , Homeostasis , Oxidación-Reducción , Azufre , Complejos de Ubiquitina-Proteína Ligasa
14.
Nat Commun ; 11(1): 698, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019928

RESUMEN

Profound metabolic changes are characteristic of macrophages during classical activation and have been implicated in this phenotype. Here we demonstrate that nitric oxide (NO) produced by murine macrophages is responsible for TCA cycle alterations and citrate accumulation associated with polarization. 13C tracing and mitochondrial respiration experiments map NO-mediated suppression of metabolism to mitochondrial aconitase (ACO2). Moreover, we find that inflammatory macrophages reroute pyruvate away from pyruvate dehydrogenase (PDH) in an NO-dependent and hypoxia-inducible factor 1α (Hif1α)-independent manner, thereby promoting glutamine-based anaplerosis. Ultimately, NO accumulation leads to suppression and loss of mitochondrial electron transport chain (ETC) complexes. Our data reveal that macrophages metabolic rewiring, in vitro and in vivo, is dependent on NO targeting specific pathways, resulting in reduced production of inflammatory mediators. Our findings require modification to current models of macrophage biology and demonstrate that reprogramming of metabolism should be considered a result rather than a mediator of inflammatory polarization.


Asunto(s)
Aconitato Hidratasa/metabolismo , Macrófagos/enzimología , Óxido Nítrico/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Aconitato Hidratasa/genética , Animales , Ácido Cítrico/metabolismo , Ciclo del Ácido Cítrico , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/genética , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Ácido Pirúvico/metabolismo
15.
Curr Opin Chem Biol ; 55: 34-44, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31918395

RESUMEN

The recently solved crystal structures of the human cysteine desulfurase NFS1, in complex with the LYR protein ISD11, the acyl carrier protein ACP, and the main scaffold ISCU, have shed light on the molecular interactions that govern initial cluster assembly on ISCU. Here, we aim to highlight recent insights into iron-sulfur (Fe-S) cluster (ISC) biogenesis in mammalian cells that have arisen from the crystal structures of the core ISC assembly complex. We will also discuss how ISCs are delivered to recipient proteins and the challenges that remain in dissecting the pathways that deliver clusters to numerous Fe-S recipient proteins in both the mitochondrial matrix and cytosolic compartments of mammalian cells.


Asunto(s)
Proteína Transportadora de Acilo/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Unión a Hierro/química , Hierro/química , Azufre/química , Proteína Transportadora de Acilo/metabolismo , Secuencia de Aminoácidos , Liasas de Carbono-Azufre/química , Biología Computacional , Cristalización , Citosol/metabolismo , Citosol/ultraestructura , Humanos , Proteínas de Unión a Hierro/metabolismo , Proteínas Reguladoras del Hierro/química , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Modelos Moleculares , Unión Proteica , Conformación Proteica , Frataxina
16.
J Clin Invest ; 129(10): 4365-4376, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498148

RESUMEN

Inflammatory destruction of iron-rich myelin is characteristic of multiple sclerosis (MS). Although iron is needed for oligodendrocytes to produce myelin during development, its deposition has also been linked to neurodegeneration and inflammation, including in MS. We report perivascular iron deposition in multiple sclerosis lesions that was mirrored in 72 lesions from 13 marmosets with experimental autoimmune encephalomyelitis. Iron accumulated mainly inside microglia/macrophages from 6 weeks after demyelination. Consistently, expression of transferrin receptor, the brain's main iron-influx protein, increased as lesions aged. Iron was uncorrelated with inflammation and postdated initial demyelination, suggesting that iron is not directly pathogenic. Iron homeostasis was at least partially restored in remyelinated, but not persistently demyelinated, lesions. Taken together, our results suggest that iron accumulation in the weeks after inflammatory demyelination may contribute to lesion repair rather than inflammatory demyelination per se.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Hierro/metabolismo , Esclerosis Múltiple/metabolismo , Adulto , Anciano , Animales , Callithrix , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Modelos Neurológicos , Esclerosis Múltiple/patología , Receptores de Transferrina/metabolismo , Remielinización
17.
Blood Adv ; 3(8): 1211-1225, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30971398

RESUMEN

In macrophages, cellular iron metabolism status is tightly integrated with macrophage phenotype and associated with mitochondrial function. However, how molecular events regulate mitochondrial activity to integrate regulation of iron metabolism and macrophage phenotype remains unclear. Here, we explored the important role of the actin-regulatory protein glia maturation factor-γ (GMFG) in the regulation of cellular iron metabolism and macrophage phenotype. We found that GMFG was downregulated in murine macrophages by exposure to iron and hydrogen peroxide. GMFG knockdown altered the expression of iron metabolism proteins and increased iron levels in murine macrophages and concomitantly promoted their polarization toward an anti-inflammatory M2 phenotype. GMFG-knockdown macrophages exhibited moderately increased levels of mitochondrial reactive oxygen species (mtROS), which were accompanied by decreased expression of some mitochondrial respiration chain components, including the iron-sulfur cluster assembly scaffold protein ISCU as well as the antioxidant enzymes SOD1 and SOD2. Importantly, treatment of GMFG-knockdown macrophages with the antioxidant N-acetylcysteine reversed the altered expression of iron metabolism proteins and significantly inhibited the enhanced gene expression of M2 macrophage markers, suggesting that mtROS is mechanistically linked to cellular iron metabolism and macrophage phenotype. Finally, GMFG interacted with the mitochondrial membrane ATPase ATAD3A, suggesting that GMFG knockdown-induced mtROS production might be attributed to alteration of mitochondrial function in macrophages. Our findings suggest that GMFG is an important regulator in cellular iron metabolism and macrophage phenotype and could be a novel therapeutic target for modulating macrophage function in immune and metabolic disorders.


Asunto(s)
Factor de Maduración de la Glia/metabolismo , Hierro/metabolismo , Macrófagos/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factor de Maduración de la Glia/genética , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Células RAW 264.7 , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
18.
Brain ; 142(5): 1195-1202, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30915432

RESUMEN

Disruption of cellular iron homeostasis can contribute to neurodegeneration. In mammals, two iron-regulatory proteins (IRPs) shape the expression of the iron metabolism proteome. Targeted deletion of Ireb2 in a mouse model causes profoundly disordered iron metabolism, leading to functional iron deficiency, anemia, erythropoietic protoporphyria, and a neurodegenerative movement disorder. Using exome sequencing, we identified the first human with bi-allelic loss-of-function variants in the gene IREB2 leading to an absence of IRP2. This 16-year-old male had neurological and haematological features that emulate those of Ireb2 knockout mice, including neurodegeneration and a treatment-resistant choreoathetoid movement disorder. Cellular phenotyping at the RNA and protein level was performed using patient and control lymphoblastoid cell lines, and established experimental assays. Our studies revealed functional iron deficiency, altered post-transcriptional regulation of iron metabolism genes, and mitochondrial dysfunction, as observed in the mouse model. The patient's cellular abnormalities were reversed by lentiviral-mediated restoration of IRP2 expression. These results confirm that IRP2 is essential for regulation of iron metabolism in humans, and reveal a previously unrecognized subclass of neurodegenerative disease. Greater understanding of how the IRPs mediate cellular iron distribution may ultimately provide new insights into common and rare neurodegenerative processes, and could result in novel therapies.


Asunto(s)
Variación Genética/fisiología , Proteína 2 Reguladora de Hierro/deficiencia , Proteína 2 Reguladora de Hierro/genética , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/genética , Adolescente , Línea Celular Transformada , Humanos , Masculino , Enfermedades Neurodegenerativas/metabolismo
19.
Biometals ; 32(3): 343-353, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30923992

RESUMEN

In recent years, iron sulfur (Fe-S) proteins have been identified as key players in mammalian metabolism, ranging from long-known roles in the respiratory complexes and the citric acid cycle, to more recently recognized roles in RNA and DNA metabolism. Fe-S cofactors have often been missed because of their intrinsic lability and oxygen sensitivity. More Fe-S proteins have now been identified owing to detection of their direct interactions with components of the Fe-S biogenesis machinery, and through use of informatics to detect a motif that binds the co-chaperone responsible for transferring nascent Fe-S clusters to domains of recipient proteins. Dissection of the molecular steps involved in Fe-S transfer to Fe-S proteins has revealed that direct and shielded transfer occurs through highly conserved pathways that operate in parallel in the mitochondrial matrix and in the cytosolic/nuclear compartments of eukaryotic cells. Because Fe-S clusters have the unusual ability to accept or donate single electrons in chemical reactions, their presence renders complex chemical reactions possible. In addition, Fe-S clusters may function as sensors that interconnect activity of metabolic pathways with cellular redox status. Presence in pathways that control growth and division may enable cells to regulate their growth according to sufficiency of energy stores represented by redox capacity, and oxidation of such proteins could diminish anabolic activities to give cells an opportunity to restore energy supplies. This review will discuss mechanisms of Fe-S biogenesis and delivery, and methods that will likely reveal important roles of Fe-S proteins in proteins not yet recognized as Fe-S proteins.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Redes y Vías Metabólicas , Animales , Humanos
20.
Nat Commun ; 9(1): 5099, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504842

RESUMEN

Neutrophils are a vital component of immune protection, yet in cancer they may promote tumour progression, partly by generating reactive oxygen species (ROS) that disrupts lymphocyte functions. Metabolically, neutrophils are often discounted as purely glycolytic. Here we show that immature, c-Kit+ neutrophils subsets can engage in oxidative mitochondrial metabolism. With limited glucose supply, oxidative neutrophils use mitochondrial fatty acid oxidation to support NADPH oxidase-dependent ROS production. In 4T1 tumour-bearing mice, mitochondrial fitness is enhanced in splenic neutrophils and is driven by c-Kit signalling. Concordantly, tumour-elicited oxidative neutrophils are able to maintain ROS production and T cell suppression when glucose utilisation is restricted. Consistent with these findings, peripheral blood neutrophils from patients with cancer also display increased immaturity, mitochondrial content and oxidative phosphorylation. Together, our data suggest that the glucose-restricted tumour microenvironment induces metabolically adapted, oxidative neutrophils to maintain local immune suppression.


Asunto(s)
Mitocondrias/metabolismo , Neutrófilos/fisiología , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Células Cultivadas , Citometría de Flujo , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Confocal , Neutrófilos/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA