Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Stem Cells Transl Med ; 13(2): 107-115, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38016185

RESUMEN

Alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) represent pathological conditions that include many distinct stages, potentially leading to the final stage of cirrhotic liver. To date, liver transplantation is the sole successful treatment with concomitant limitations related to donor organ shortage and the need of life-long immunosuppressive therapy. Recently, cell-based therapies for ALD and NAFLD have been proposed with mesenchymal stem/stromal cells (MSCs) as promising effectors. MSC therapeutic applications offer hepatoprotection, regulation of the inflammatory process and angiogenesis particularly in ALD and NAFLD pre-clinical disease models. Recent studies suggested that hepatospecific MSC-based therapies could benefit liver diseases by restoring liver function and decreasing inflammation and fibrosis. Similarly to solid-organ transplantation, limitations in MSC approaches include donor availability exacerbated by high number of cells and cell trapping into lungs. Herein, based on recent advances, we discuss the use of MSCs as a therapeutic approach for ALD and NAFLD and we provide the available information for the establishment of a framework toward a potential clinical application.


Asunto(s)
Hepatopatías Alcohólicas , Células Madre Mesenquimatosas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/patología , Hepatopatías Alcohólicas/complicaciones , Hepatopatías Alcohólicas/patología , Hepatopatías Alcohólicas/terapia , Hígado/patología , Cirrosis Hepática/patología , Células Madre Mesenquimatosas/patología
2.
iScience ; 26(11): 108100, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37915594

RESUMEN

Liver transplantation is the gold-standard therapy for acute hepatic failure (AHF) with limitations related to organ shortage and life-long immunosuppressive therapy. Cell therapy emerges as a promising alternative to transplantation. We have previously shown that IL-10 and Annexin-A1 released by amniotic fluid human mesenchymal stromal cells (AF-MSCs) and their hepatocyte progenitor-like (HPL) or hepatocyte-like (HPL) cells induce liver repair and downregulate systemic inflammation in a CCl4-AHF mouse model. Herein, we demonstrate that exosomes (EXO) derived from these cells improve liver phenotype in CCl4-induced mice and promote oval cell proliferation. LC-MS/MS proteomic analysis identified MEFG-8 in EXO cargo that facilitates rescue of AHF by suppressing PI3K signaling. Administration of recombinant MFGE-8 protein also reduced liver damage in CCl4-induced mice. Clinically, MEFG-8 expression was decreased in liver biopsies from AHF patients. Collectively, our study provides proof-of-concept for an innovative, cell-free, less immunogenic, and non-toxic alternative strategy for AHF.

3.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37373151

RESUMEN

The collagen family contains 28 proteins, predominantly expressed in the extracellular matrix (ECM) and characterized by a triple-helix structure. Collagens undergo several maturation steps, including post-translational modifications (PTMs) and cross-linking. These proteins are associated with multiple diseases, the most pronounced of which are fibrosis and bone diseases. This review focuses on the most abundant ECM protein highly implicated in disease, type I collagen (collagen I), in particular on its predominant chain collagen type I alpha 1 (COLα1 (I)). An overview of the regulators of COLα1 (I) and COLα1 (I) interactors is presented. Manuscripts were retrieved searching PubMed, using specific keywords related to COLα1 (I). COL1A1 regulators at the epigenetic, transcriptional, post-transcriptional and post-translational levels include DNA Methyl Transferases (DNMTs), Tumour Growth Factor ß (TGFß), Terminal Nucleotidyltransferase 5A (TENT5A) and Bone Morphogenic Protein 1 (BMP1), respectively. COLα1 (I) interacts with a variety of cell receptors including integrinß, Endo180 and Discoidin Domain Receptors (DDRs). Collectively, even though multiple factors have been identified in association to COLα1 (I) function, the implicated pathways frequently remain unclear, underscoring the need for a more spherical analysis considering all molecular levels simultaneously.


Asunto(s)
Colágeno Tipo I , Colágeno , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Receptores con Dominio Discoidina/metabolismo , Receptores de Superficie Celular/metabolismo
4.
Front Bioeng Biotechnol ; 10: 961987, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36263355

RESUMEN

Perinatal tissues, such as placenta and umbilical cord contain a variety of somatic stem cell types, spanning from the largely used hematopoietic stem and progenitor cells to the most recently described broadly multipotent epithelial and stromal cells. As perinatal derivatives (PnD), several of these cell types and related products provide an interesting regenerative potential for a variety of diseases. Within COST SPRINT Action, we continue our review series, revising and summarizing the modalities of action and proposed medical approaches using PnD products: cells, secretome, extracellular vesicles, and decellularized tissues. Focusing on the brain, bone, skeletal muscle, heart, intestinal, liver, and lung pathologies, we discuss the importance of potency testing in validating PnD therapeutics, and critically evaluate the concept of PnD application in the field of tissue regeneration. Hereby we aim to shed light on the actual therapeutic properties of PnD, with an open eye for future clinical application. This review is part of a quadrinomial series on functional/potency assays for validation of PnD, spanning biological functions, such as immunomodulation, anti-microbial/anti-cancer, anti-inflammation, wound healing, angiogenesis, and regeneration.

5.
Cells ; 11(15)2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35954155

RESUMEN

The liver is the organ with the highest regenerative capacity in the human body. However, various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Despite advances in surgery and pharmacological treatments, liver diseases remain a leading cause of death worldwide. To address the shortage of donor liver organs for orthotopic liver transplantation, cell therapy in liver disease has emerged as a promising regenerative treatment. Sources include primary hepatocytes or functional hepatocytes generated from the reprogramming of induced pluripotent stem cells (iPSC). Different types of stem cells have also been employed for transplantation to trigger regeneration, including hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs) as well as adult and fetal liver progenitor cells. HSCs, usually defined by the expression of CD34 and CD133, and MSCs, defined by the expression of CD105, CD73, and CD90, are attractive sources due to their autologous nature, ease of isolation and cryopreservation. The present review focuses on the use of bone marrow HSCs for liver regeneration, presenting evidence for an ongoing crosstalk between the hematopoietic and the hepatic system. This relationship commences during embryogenesis when the fetal liver emerges as the crossroads between the two systems converging the presence of different origins of cells (mesoderm and endoderm) in the same organ. Ample evidence indicates that the fetal liver supports the maturation and expansion of HSCs during development but also later on in life. Moreover, the fact that the adult liver remains one of the few sites for extramedullary hematopoiesis-albeit pathological-suggests that this relationship between the two systems is ongoing. Can, however, the hematopoietic system offer similar support to the liver? The majority of clinical studies using hematopoietic cell transplantation in patients with liver disease report favourable observations. The underlying mechanism-whether paracrine, fusion or transdifferentiation or a combination of the three-remains to be confirmed.


Asunto(s)
Hepatopatías , Trasplante de Hígado , Adulto , Células Madre Hematopoyéticas , Humanos , Regeneración Hepática , Donadores Vivos
6.
Cancers (Basel) ; 14(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35626146

RESUMEN

Despite advancements in molecular classification, tumor stage and grade still remain the most relevant prognosticators used by clinicians to decide on patient management. Here, we leverage publicly available data to characterize bladder cancer (BLCA)'s stage biology based on increased sample sizes, identify potential therapeutic targets, and extract putative biomarkers. A total of 1135 primary BLCA transcriptomes from 12 microarray studies were compiled in a meta-cohort and analyzed for monotonal alterations in pathway activities, gene expression, and co-expression patterns with increasing stage (Ta-T1-T2-T3-T4), starting from the non-malignant tumor-adjacent urothelium. The TCGA-2017 and IMvigor-210 RNA-Seq data were used to validate our findings. Wnt, MTORC1 signaling, and MYC activity were monotonically increased with increasing stage, while an opposite trend was detected for the catabolism of fatty acids, circadian clock genes, and the metabolism of heme. Co-expression network analysis highlighted stage- and cell-type-specific genes of potentially synergistic therapeutic value. An eight-gene signature, consisting of the genes AKAP7, ANLN, CBX7, CDC14B, ENO1, GTPBP4, MED19, and ZFP2, had independent prognostic value in both the discovery and validation sets. This novel eight-gene signature may increase the granularity of current risk-to-progression estimators.

7.
Cells ; 11(9)2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563716

RESUMEN

The liver represents the most important metabolic organ of the human body. It is evident that an imbalance of liver function can lead to several pathological conditions, known as liver failure. Orthotropic liver transplantation (OLT) is currently the most effective and established treatment for end-stage liver diseases and acute liver failure (ALF). Due to several limitations, stem-cell-based therapies are currently being developed as alternative solutions. Stem cells or progenitor cells derived from various sources have emerged as an alternative source of hepatic regeneration. Therefore, hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are also known to differentiate into hepatocyte-like cells (HPLCs) and liver progenitor cells (LPCs) that can be used in preclinical or clinical studies of liver disease. Furthermore, these cells have been shown to be effective in the development of liver organoids that can be used for disease modeling, drug testing and regenerative medicine. In this review, we aim to discuss the characteristics of stem-cell-based therapies for liver diseases and present the current status and future prospects of using HLCs, LPCs or liver organoids in clinical trials.


Asunto(s)
Células Madre Pluripotentes Inducidas , Hepatopatías , Hepatocitos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hepatopatías/metabolismo , Hepatopatías/terapia , Organoides/metabolismo
8.
Hepatology ; 75(6): 1590-1603, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34449901

RESUMEN

Liver dysfunctions are classified into acute and chronic diseases, which comprise a heterogeneous group of pathological features and a high mortality rate. Liver transplantation remains the gold-standard therapy for most liver diseases, with concomitant limitations related to donor organ shortage and lifelong immunosuppressive therapy. A concept in liver therapy intends to overcome these limitations based on the secreted extracellular vesicles (EVs; microvesicles and exosomes) by mesenchymal stem/stromal cells (MSCs). A significant number of studies have shown that factors released by MSCs could induce liver repair and ameliorate systemic inflammation through paracrine effects. It is well known that this paracrine action is based not only on the secretion of cytokines and growth factors but also on EVs, which regulate pathways associated with inflammation, hepatic fibrosis, integrin-linked protein kinase signaling, and apoptosis. Herein, we extensively discuss the differential effects of MSC-EVs on different liver diseases and on cellular and animal models and address the complex molecular mechanisms involved in the therapeutic potential of EVs. In addition, we cover the crucial information regarding the type of molecules contained in MSC-EVs that can be effective in the context of liver diseases. In conclusion, outcomes on MSC-EV-mediated therapy are expected to lead to an innovative, cell-free, noninvasive, less immunogenic, and nontoxic alternative strategy for liver treatment and to provide important mechanistic information on the reparative function of liver cells.


Asunto(s)
Exosomas , Vesículas Extracelulares , Hepatopatías , Células Madre Mesenquimatosas , Animales , Vesículas Extracelulares/metabolismo , Inflamación/metabolismo , Hepatopatías/metabolismo , Hepatopatías/terapia
9.
Hum Gene Ther ; 32(19-20): 1120-1137, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34662232

RESUMEN

Gene therapy is a relatively novel field that amounts to around four decades of continuous growth with its good and bad moments. Currently, the field has entered the clinical arena with the ambition to fulfil its promises for a permanent fix of incurable genetic disorders. Hemoglobinopathies as target diseases and hematopoietic stem cells (HSCs) as target cells of genetic interventions had a major share in the research effort toward efficiently implementing gene therapy. Dissection of HSC biology and improvements in gene transfer and gene expression technologies evolved in an almost synchronous manner to a point where the two fields seem to be functionally intercalated. In this review, we focus specifically on the development of gene therapy for hemoglobin disorders and look at both gene addition and gene correction strategies that may dominate the field of HSC-directed gene therapy in the near future and transform the therapeutic landscape for genetic diseases.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Hemoglobinopatías , Edición Génica , Terapia Genética , Vectores Genéticos , Células Madre Hematopoyéticas , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Humanos
10.
Histol Histopathol ; 35(12): 1415-1426, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32959885

RESUMEN

INTRODUCTION: Mesenchymal stromal cells (MSCs) can be derived from a wide range of fetal and adult sources including pluripotent stem cells (PSCs). The properties of PSC-derived MSCs need to be fully characterized, in order to evaluate the feasibility of their use in clinical applications. PSC-MSC proliferation and differentiation potential in comparison with bone marrow (BM)-MSCs is still under investigation. The objective of this study was to determine the proliferative and chondrogenic capabilities of both human induced pluripotent stem cell (hiPSC-) and embryonic stem cell (hESC-) derived MSCs, by comparing them with BM-MSCs. METHODS: MSCs were derived from two hiPSC lines (hiPSC-MSCs), the well characterized Hues9 hESC line (hESC-MSCs) and BM from two healthy donors (BM-MSCs). Proliferation potential was investigated using appropriate culture conditions, with serial passaging, until cells entered into senescence. Differentiation potential to cartilage was examined after in vitro chondrogenic culture conditions. RESULTS: BM-MSCs revealed a fold expansion of 1.18x105 and 2.3x105 while the two hiPSC-MSC lines and hESC-MSC showed 5.88x10¹°, 3.49x108 and 2.88x108, respectively. Under chondrogenic conditions, all MSC lines showed a degree of chondrogenesis. However, when we examined the formed chondrocyte micromasses by histological analysis of the cartilage morphology and immunohistochemistry for the chondrocyte specific markers Sox9 and Collagen II, we observed that PSC-derived MSC lines had formed pink rather than hyaline cartilage, in contrast to BM-MSCs. CONCLUSION: In conclusion, MSCs derived from both hESCs and hiPSCs had superior proliferative capacity compared to BM-MSCs, but they were inefficient in their ability to form hyaline cartilage.


Asunto(s)
Células de la Médula Ósea/fisiología , Diferenciación Celular , Proliferación Celular , Condrogénesis , Células Madre Embrionarias Humanas/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Mesenquimatosas/fisiología , Animales , Biomarcadores/metabolismo , Células de la Médula Ósea/metabolismo , Línea Celular , Colágeno Tipo II/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Fenotipo , Factor de Transcripción SOX9/metabolismo , Transducción de Señal
11.
Cells ; 9(5)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365526

RESUMEN

P0-related protein (PZR), a Noonan and Leopard syndrome target, is a member of the transmembrane Immunoglobulin superfamily. Its cytoplasmic tail contains two immune-receptor tyrosine-based inhibitory motifs (ITIMs), implicated in adhesion-dependent signaling and regulating cell adhesion and motility. PZR promotes cell migration on the extracellular matrix (ECM) molecule, fibronectin, by interacting with SHP-2 (Src homology-2 domain-containing protein tyrosine phosphatase-2), a molecule essential for skeletal development and often mutated in Noonan and Leopard syndrome patients sharing overlapping musculoskeletal abnormalities and cardiac defects. To further explore the role of PZR, we assessed the expression of PZR and its ITIM-less isoform, PZRb, in human bone marrow mesenchymal stromal cells (hBM MSC), and its ability to facilitate adhesion to and spreading and migration on various ECM molecules. Furthermore, using siRNA knockdown, confocal microscopy, and immunoprecipitation assays, we assessed PZR and PZRb interactions with ß1 integrins. PZR was the predominant isoform in hBM MSC. Migrating hBM MSCs interacted most effectively with fibronectin and required the association of PZR, but not PZRb, with the integrin, VLA-5(α5ß1), leading to modulation of focal adhesion kinase phosphorylation and vinculin levels. This raises the possibility that dysregulation of PZR function may modify hBM MSC migratory behavior, potentially contributing to skeletal abnormalities.


Asunto(s)
Movimiento Celular/fisiología , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas Portadoras/genética , Humanos , Fosfoproteínas/metabolismo , Transducción de Señal/fisiología , Tirosina/metabolismo
12.
J Proteome Res ; 19(7): 2631-2642, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31682457

RESUMEN

Prostate cancer (PCa) is one of the leading causes of death in men worldwide. The molecular features, associated with the onset and progression of the disease, are under vigorous investigation. Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources for large-scale studies; however, their application in proteomics is limited due to protein cross-linking. In this study, the adjustment of a protocol for the proteomic analysis of FFPE tissues was performed which was followed by a pilot application on FFPE PCa clinical samples to investigate whether the optimized protocol can provide biologically relevant data for the investigation of PCa. For the optimization, FFPE mouse tissues were processed using seven protein extraction protocols including combinations of homogenization methods (beads, sonication, boiling) and buffers (SDS based and urea-thiourea based). The proteome extraction efficacy was then evaluated based on protein identifications and reproducibility using SDS electrophoresis and high resolution LC-MS/MS analysis. Comparison between the FFPE and matched fresh frozen (FF) tissues, using an optimized protocol involving protein extraction with an SDS-based buffer following beads homogenization and boiling, showed a substantial overlap in protein identifications with a strong correlation in relative abundances (rs = 0.819, p < 0.001). Next, FFPE tissues (3 sections, 15 µm each per sample) from 10 patients with PCa corresponding to tumor (GS = 6 or GS ≥ 8) and adjacent benign regions were processed with the optimized protocol. Extracted proteins were analyzed by GeLC-MS/MS followed by statistical and bioinformatics analysis. Proteins significantly deregulated between PCa GS ≥ 8 and PCa GS = 6 represented extracellular matrix organization, gluconeogenesis, and phosphorylation pathways. Proteins deregulated between cancerous and adjacent benign tissues, reflected increased translation, peptide synthesis, and protein metabolism in the former, which is consistent with the literature. In conclusion, the results support the relevance of the proteomic findings in the context of PCa and the reliability of the optimized protocol for proteomics analysis of FFPE material.


Asunto(s)
Neoplasias de la Próstata , Proteómica , Animales , Cromatografía Liquida , Formaldehído , Humanos , Masculino , Ratones , Adhesión en Parafina , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Fijación del Tejido
13.
EBioMedicine ; 45: 542-552, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31303498

RESUMEN

BACKGROUND: Human mesenchymal stem/stromal cells (MSCs) and their secreted molecules exert beneficial effects in injured tissues by promoting tissue regeneration and angiogenesis and by inhibiting inflammation and fibrosis. We have previously demonstrated that the therapeutic activity of fetal MSCs derived from amniotic fluid (AF-MSCs) and their hepatic progenitor-like cells (HPL) is mediated by paracrine effects in a mouse model of acute hepatic failure (AHF). METHODS: Herein, we have combined proteomic profiling of the AF-MSCs and HPL cell secretome with ex vivo and in vivo functional studies to identify specific soluble factors, which underpin tissue regeneration in AHF. FINDINGS: The anti-inflammatory molecule Annexin-A1 (ANXA1) was detected at high levels in both AF-MSC and HPL cell secretome. Further functional analyses revealed that the shRNA-mediated knock-down of ANXA1 in MSCs (shANXA1-MSCs) decreased their proliferative, clonogenic and migratory potential, as well as their ability to differentiate into HPL cells. Liver progenitors (oval cells) from AHF mice displayed reduced proliferation when cultured ex vivo in the presence of conditioned media from shANXA1-MSCs compared to control MSCs secretome. Intra-hepatic delivery of conditioned media from control MSCs but not shANXA1-MSCs reduced liver damage and circulating levels of pro-inflammatory cytokines in AHF. INTERPRETATION: Collectively, our study uncovers secreted Annexin-A1 as a novel effector of MSCs in liver regeneration and further underscores the potential of cell-free therapeutic strategies for liver diseases. FUND: Fondation Santé, GILEAD Asklipeios Grant, Fellowships of Excellence - Siemens, IKY, Reinforcement of Postdoctoral Researchers, IKY.


Asunto(s)
Anexina A1/genética , Regeneración Hepática/genética , Trasplante de Células Madre Mesenquimatosas , Proteómica , Animales , Anexina A1/metabolismo , Células de la Médula Ósea/metabolismo , Proliferación Celular/genética , Medios de Cultivo Condicionados/farmacología , Feto , Humanos , Péptidos y Proteínas de Señalización Intercelular , Hígado/metabolismo , Hígado/patología , Células Madre Mesenquimatosas/metabolismo , Ratones
14.
Exp Ther Med ; 14(3): 2415-2423, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28962175

RESUMEN

Autologous fat is considered the ideal material for soft-tissue augmentation in plastic and reconstructive surgery. The primary drawback of autologous fat grafting is the high resorption rate. The isolation of mesenchymal stem cells from adipose tissue inevitably led to research focusing on the study of combined transplantation of autologous fat and adipose derived stem cells (ADSCs) and introduced the theory of 'cell-assisted lipotransfer'. Transplantation of ADSCs is a promising strategy, due to the high proliferative capacity of stem cells, their potential to induce paracrine signalling and ability to differentiate into adipocytes and vascular cells. The current study examined the literature for clinical and experimental studies on cell-assisted lipotransfer to assess the efficacy of this novel technique when compared with traditional fat grafting. A total of 30 studies were included in the present review. The current study demonstrates that cell-assisted lipotransfer has improved efficacy compared with conventional fat grafting. Despite relatively positive outcomes, further investigation is required to establish a consensus in cell-assisted lipotransfer.

15.
Oncotarget ; 8(41): 69435-69455, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-29050215

RESUMEN

Patients with advanced bladder cancer have poor outcomes, indicating a need for more efficient therapeutic approaches. This study characterizes proteomic changes underlying bladder cancer invasion aiming for the better understanding of disease pathophysiology and identification of drug targets. High resolution liquid chromatography coupled to tandem mass spectrometry analysis of tissue specimens from patients with non-muscle invasive (NMIBC, stage pTa) and muscle invasive bladder cancer (MIBC, stages pT2+) was conducted. Comparative analysis identified 144 differentially expressed proteins between analyzed groups. These included proteins previously associated with bladder cancer and also additional novel such as PGRMC1, FUCA1, BROX and PSMD12, which were further confirmed by immunohistochemistry. Pathway and interactome analysis predicted strong activation in muscle invasive bladder cancer of pathways associated with protein synthesis e.g. eIF2 and mTOR signaling. Knock-down of eukaryotic translation initiation factor 3 subunit D (EIF3D) (overexpressed in muscle invasive disease) in metastatic T24M bladder cancer cells inhibited cell proliferation, migration, and colony formation in vitro and decreased tumor growth in xenograft models. By contrast, knocking down GTP-binding protein Rheb (which is upstream of EIF3D) recapitulated the effects of EIF3D knockdown in vitro, but not in vivo. Collectively, this study represents a comprehensive analysis of NMIBC and MIBC providing a resource for future studies. The results highlight EIF3D as a potential therapeutic target.

16.
Cell Reprogram ; 19(4): 217-224, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28520465

RESUMEN

The concept of Regenerative Medicine combined with Cell based Therapy and Tissue Engineering represents the fourth pillar of healthcare and provides a promising approach for the treatment of serious diseases. Recently, cell based therapies are focused on the use of mesenchymal stem/stromal cells (MSCs). Human MSCs, that represent a mesoderm derived population of progenitors, are easily expanded in culture. They are capable to differentiate into osteoblasts, chondrocytes, and adipocytes and exhibit the potential to repair or regenerate damaged tissues. The best characterized source of human MSCs to date is the bone marrow; recently, fetal sources, such as amniotic fluid, umbilical cord, amniotic membranes, or placenta, have also attracted increased attention. Thus, MSCs may represent a valuable tool for tissue repair and cell therapeutic applications. To this end, the main focus of this review is to summarize and evaluate the key characteristics, the sources, and the potential use of MSCs in therapeutic approaches and modalities.


Asunto(s)
Células Madre Mesenquimatosas , Medicina Regenerativa/historia , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos
17.
Stem Cells Dev ; 26(7): 482-494, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28068868

RESUMEN

Recent findings indicate that microRNAs (miRNAs) are critical for the regulatory network of adipogenesis in human mesenchymal stem/stromal cells (MSCs). Fetal MSCs derived from amniotic fluid (AF-MSCs) represent a population of multipotent stem cells characterized by a wide range of differentiation properties that can be applied in cell-based therapies. In this study, miRNA microarray analysis was performed to assess miRNA expression in terminal differentiated AF-MSCs into adipocyte-like cells (AL cells). MiR-26a was identified in high expression levels in AL cells indicating a critical role in the process of adipogenesis. Overexpression of miR-26a in AF-MSCs led to significant induction of their adipogenic differentiation properties that were altered after miR-26a inhibition. We have demonstrated that miR-26a regulates adipogenesis through direct inhibition of PTEN, which in turn promotes activation of Akt pathway. Also, miR-26a modulates cell cycle during adipogenesis by interacting with Cyclin E1 and CDK6. These results point to the regulatory role of miR-26a and its target genes PTEN, Cyclin E1, and CDK6 in adipogenic differentiation of AF-MSCs, providing a basis for understanding the mechanisms of fat cell development and obesity.


Asunto(s)
Adipogénesis/genética , Ciclina E/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Células Madre Multipotentes/citología , Proteínas Oncogénicas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Adipocitos/citología , Tejido Adiposo/citología , Líquido Amniótico/metabolismo , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética
18.
Oncotarget ; 7(43): 70750-70768, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27683119

RESUMEN

Bladder cancer (BC) is the second most common malignancy of the genitourinary system, characterized by the highest recurrence rate of all cancers. Treatment options are limited; thus a thorough understanding of the underlying molecular mechanisms is needed to guide the discovery of novel therapeutic targets. Profilins are actin binding proteins with attributed pleiotropic functions to cytoskeletal remodeling, cell adhesion, motility, even transcriptional regulation, not fully characterized yet. Earlier studies from our laboratory revealed that decreased tissue levels of Profilin-1 (PFN1) are correlated with BC progression to muscle invasive disease. Herein, we describe a comprehensive analysis of PFN1 silencing via shRNA, in vitro (by employing T24M cells) and in vivo [(with T24M xenografts in non-obese diabetic severe combined immunodeficient mice (NOD/SCID) mice]. A combination of phenotypic and molecular assays, including migration, proliferation, adhesion assays, flow cytometry and total mRNA sequencing, as well as immunohistochemistry for investigation of selected findings in human specimens were applied. A decrease in BC cell adhesion and tumor growth in vivo following PFN downregulation are observed, likely associated with the concomitant downregulation of Fibronectin receptor, Endothelin-1, and Actin polymerization. A decrease in the levels of multiple key members of the non-canonical Wnt/Ca2+ signaling pathway is also detected following PFN1 suppression, providing the groundwork for future studies, addressing the specific role of PFN1 in Ca2+ signaling, particularly in the muscle invasive disease.


Asunto(s)
Calcio/metabolismo , Integrina alfa5beta1/metabolismo , Neoplasias de los Músculos/patología , Profilinas/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Actinas/metabolismo , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Regulación hacia Abajo , Endotelina-1/metabolismo , Citometría de Flujo , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias de los Músculos/secundario , Profilinas/genética , Multimerización de Proteína , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Vejiga Urinaria/patología , Vía de Señalización Wnt , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Clin Cancer Res ; 22(16): 4077-86, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27026199

RESUMEN

PURPOSE: Urothelial bladder cancer presents high recurrence rates, mandating continuous monitoring via invasive cystoscopy. The development of noninvasive tests for disease diagnosis and surveillance remains an unmet clinical need. In this study, validation of two urine-based biomarker panels for detecting primary and recurrent urothelial bladder cancer was conducted. EXPERIMENTAL DESIGN: Two studies (total n = 1,357) were performed for detecting primary (n = 721) and relapsed urothelial bladder cancer (n = 636). Cystoscopy was applied for detecting urothelial bladder cancer, while patients negative for recurrence had follow-up for at least one year to exclude presence of an undetected tumor at the time of sampling. Capillary electrophoresis coupled to mass spectrometry (CE-MS) was employed for the identification of urinary peptide biomarkers. The candidate urine-based peptide biomarker panels were derived from nested cross-sectional studies in primary (n = 451) and recurrent (n = 425) urothelial bladder cancer. RESULTS: Two biomarker panels were developed on the basis of 116 and 106 peptide biomarkers using support vector machine algorithms. Validation of the urine-based biomarker panels in independent validation sets, resulted in AUC values of 0.87 and 0.75 for detecting primary (n = 270) and recurrent urothelial bladder cancer (n = 211), respectively. At the optimal threshold, the classifier for detecting primary urothelial bladder cancer exhibited 91% sensitivity and 68% specificity, while the classifier for recurrence demonstrated 87% sensitivity and 51% specificity. Particularly for patients undergoing surveillance, improved performance was achieved when combining the urine-based panel with cytology (AUC = 0.87). CONCLUSIONS: The developed urine-based peptide biomarker panel for detecting primary urothelial bladder cancer exhibits good performance. Combination of the urine-based panel and cytology resulted in improved performance for detecting disease recurrence. Clin Cancer Res; 22(16); 4077-86. ©2016 AACR.


Asunto(s)
Biomarcadores de Tumor , Péptidos/orina , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/orina , Anciano , Anciano de 80 o más Años , Estudios Transversales , Cistoscopía , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Curva ROC , Recurrencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Stem Cells Dev ; 23(22): 2730-43, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24940843

RESUMEN

Proangiogenic factors, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) prime endothelial cells to respond to "hematopoietic" chemokines and cytokines by inducing/upregulating expression of the respective chemokine/cytokine receptors. Coculture of human endothelial colony forming cell (ECFC)-derived cells with human stromal cells in the presence of VEGF and FGF-2 for 14 days resulted in upregulation of the "hematopoietic" chemokine CXCL12 and its CXCR4 receptor by day 3 of coculture. Chronic exposure to the CXCR4 antagonist AMD3100 in this vasculo/angiogenesis assay significantly reduced vascular tubule formation, an observation recapitulated by delayed AMD3100 addition. While AMD3100 did not affect ECFC-derived cell proliferation, it did demonstrate a dual action. First, over the later stages of the 14-day cocultures, AMD3100 delayed tubule organization into maturing vessel networks, resulting in enhanced endothelial cell retraction and loss of complexity as defined by live cell imaging. Second, at earlier stages of cocultures, we observed that AMD3100 significantly inhibited the integration of exogenous ECFC-derived cells into established, but immature, vascular networks. Comparative proteome profiler array analyses of ECFC-derived cells treated with AMD3100 identified changes in expression of potential candidate molecules involved in adhesion and/or migration. Blocking antibodies to CD31, but not CD146 or CD166, reduced the ECFC-derived cell integration into these extant vascular networks. Thus, CXCL12 plays a key role not only in endothelial cell sensing and guidance, but also in promoting the integration of ECFC-derived cells into developing vascular networks.


Asunto(s)
Vasos Sanguíneos/fisiología , Quimiocina CXCL12/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Sistema Hematopoyético/metabolismo , Sistema Hematopoyético/fisiología , Bencilaminas , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo/métodos , Ciclamas , Células Endoteliales/efectos de los fármacos , Sistema Hematopoyético/efectos de los fármacos , Compuestos Heterocíclicos/farmacología , Humanos , Receptores CXCR4/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA