Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Bioeng Biotechnol ; 10: 860138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782512

RESUMEN

Stem cell-derived kidney organoids have been shown to self-organize from induced pluripotent stem cells into most important renal structures. However, the structures remain immature in culture and contain endothelial networks with low connectivity and limited organoid invasion. Furthermore, the nephrons lose their phenotype after approximately 25 days. To become applicable for future transplantation, further maturation in vitro is essential. Since kidneys in vivo develop in hypoxia, we studied the modulation of oxygen availability in culture. We hypothesized that introducing long-term culture at physiological hypoxia, rather than the normally applied non-physiological, hyperoxic 21% O2, could initiate angiogenesis, lead to enhanced growth factor expression and improve the endothelial patterning. We therefore cultured the kidney organoids at 7% O2 instead of 21% O2 for up to 25 days and evaluated nephrogenesis, growth factor expression such as VEGF-A and vascularization. Whole mount imaging revealed a homogenous morphology of the endothelial network with enhanced sprouting and interconnectivity when the kidney organoids were cultured in hypoxia. Three-dimensional vessel quantification confirmed that the hypoxic culture led to an increased average vessel length, likely due to the observed upregulation of VEGFA-189 and VEGFA-121, and downregulation of the antiangiogenic protein VEGF-A165b measured in hypoxia. This research indicates the importance of optimization of oxygen availability in organoid systems and the potential of hypoxic culture conditions in improving the vascularization of organoids.

2.
J Clin Endocrinol Metab ; 107(7): 1920-1929, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35366329

RESUMEN

CONTEXT: Long-term weight loss (WL) maintenance is the biggest challenge for overweight and obesity because of the almost unavoidable phenomenon of partial or even total weight regain (WR) after WL. OBJECTIVE: In the present study we investigated the relations of (the changes of) adipocyte size and other risk biomarkers with WR during the follow-up of the Yoyo dietary intervention. METHODS: In this randomized controlled study, 48 overweight/obese participants underwent a very-low-calorie diet to lose weight, followed by a weight-stable period of 4 weeks and a follow-up period of 9 months. Anthropometric measurements, adipocyte volume of abdominal subcutaneous adipose tissue, and plasma metabolic parameters (free fatty acids [FFAs], triglycerides [TGs], total cholesterol, glucose, insulin, homeostasis model assessment of insulin resistance [HOMA-IR], interleukin 6 [IL-6], angiotensin-converting enzyme [ACE] activity, retinol binding protein 4 [RBP4]) at the beginning and the end of follow-up were analyzed. RESULTS: Our results show that changes of TGs, IL-6, HOMA-IR, and ACE are significantly positively correlated with WR. Multiple linear regression analysis shows that only TG and IL-6 changes remained significantly correlated with WR and increased body fat mass. Moreover, the change in HOMA-IR was tightly correlated with the change in TGs. Surprisingly, change in adipocyte volume during follow-up was not correlated with WR nor with other factors, but positive correlations between adipocyte volume and HOMA-IR were found at the beginning and end of the follow-up. CONCLUSION: These results suggest that TGs and IL-6 are independently linked to WR via separate mechanisms, and that HOMA-IR and adipocyte volume may indirectly link to WR through the change of plasma TGs.


Asunto(s)
Resistencia a la Insulina , Sobrepeso , Índice de Masa Corporal , Humanos , Interleucina-6/metabolismo , Obesidad/metabolismo , Sobrepeso/metabolismo , Proteínas Plasmáticas de Unión al Retinol , Triglicéridos , Aumento de Peso , Pérdida de Peso
3.
Adv Mater ; 33(31): e2102084, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34165820

RESUMEN

Surface topography is a tool to endow biomaterials with bioactive properties. However, the large number of possible designs makes it challenging to find the optimal surface structure to induce a specific cell response. The TopoChip platform is currently the largest collection of topographies with 2176 in silico designed microtopographies. Still, it is exploring only a small part of the design space due to design algorithm limitations and the surface engineering strategy. Inspired by the diversity of natural surfaces, it is assessed as to what extent the topographical design space and consequently the resulting cellular responses can be expanded using natural surfaces. To this end, 26 plant and insect surfaces are replicated in polystyrene and their surface properties are quantified using white light interferometry. Through machine-learning algorithms, it is demonstrated that natural surfaces extend the design space of the TopoChip, which coincides with distinct morphological and focal adhesion profiles in mesenchymal stem cells (MSCs) and Pseudomonas aeruginosa colonization. Furthermore, differentiation experiments reveal the strong potential of the holy lotus to improve osteogenesis in MSCs. In the future, the design algorithms will be trained with the results obtained by natural surface imprint experiments to explore the bioactive properties of novel surface topographies.


Asunto(s)
Materiales Biocompatibles , Osteogénesis , Adhesión Celular , Diferenciación Celular , Humanos , Células Madre Mesenquimatosas , Titanio
4.
Sci Rep ; 10(1): 18988, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149200

RESUMEN

Learning rules by which cell shape impacts cell function would enable control of cell physiology and fate in medical applications, particularly, on the interface of cells and material of the implants. We defined the phenotypic response of human bone marrow-derived mesenchymal stem cells (hMSCs) to 2176 randomly generated surface topographies by probing basic functions such as migration, proliferation, protein synthesis, apoptosis, and differentiation using quantitative image analysis. Clustering the surfaces into 28 archetypical cell shapes, we found a very strict correlation between cell shape and physiological response and selected seven cell shapes to describe the molecular mechanism leading to phenotypic diversity. Transcriptomics analysis revealed a tight link between cell shape, molecular signatures, and phenotype. For instance, proliferation is strongly reduced in cells with limited spreading, resulting in down-regulation of genes involved in the G2/M cycle and subsequent quiescence, whereas cells with large filopodia are related to activation of early response genes and inhibition of the osteogenic process. In this paper we were aiming to identify a universal set of genes that regulate the material-induced phenotypical response of human mesenchymal stem cells. This will allow designing implants that can actively regulate cellular, molecular signalling through cell shape. Here we are proposing an approach to tackle this question.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Perfilación de la Expresión Génica/métodos , Células Madre Mesenquimatosas/citología , Adipogénesis , Diferenciación Celular , Proliferación Celular , Forma de la Célula , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fenotipo , Análisis de Secuencia de ARN , Transducción de Señal , Propiedades de Superficie
5.
Biomaterials ; 259: 120331, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32836056

RESUMEN

We previously found that surface topographies induce the expression of the Scxa gene, encoding Scleraxis in tenocytes. Because Scxa is a TGF-ß responsive gene, we investigated the link between mechanotransduction and TGF-ß signaling. We discovered that mesenchymal stem cells exposed to both micro-topographies and TGF-ß2 display synergistic induction of SMAD phosphorylation and transcription of the TGF-ß target genes SCX, a-SMA, and SOX9. Pharmacological perturbations revealed that Rho/ROCK/SRF signaling is required for this synergistic response. We further found an activation of the early response genes SRF and EGR1 during the early adaptation phase on micro-topographies, which coincided with higher expression of the TGF-ß type-II receptor gene. Of interest, PKC activators Prostratin and Ingenol-3, known for inducing actin reorganization and activation of serum response elements, were able to mimic the topography-induced TGF-ß response. These findings provide novel insights into the convergence of mechanobiology and TGF-ß signaling, which can lead to improved culture protocols and therapeutic applications.


Asunto(s)
Células Madre Mesenquimatosas , Actinas/metabolismo , Células Cultivadas , Mecanotransducción Celular , Células Madre Mesenquimatosas/metabolismo , Fosforilación , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
6.
Sci Rep ; 9(1): 9099, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235713

RESUMEN

Human mesenchymal stem (hMSCs) are defined as multi-potent colony-forming cells expressing a specific subset of plasma membrane markers when grown on flat tissue culture polystyrene. However, as soon as hMSCs are used for transplantation, they are exposed to a 3D environment, which can strongly impact cell physiology and influence proliferation, differentiation and metabolism. Strategies to control in vivo hMSC behavior, for instance in stem cell transplantation or cancer treatment, are skewed by the un-physiological flatness of the standard well plates. Even though it is common knowledge that cells behave differently in vitro compared to in vivo, only little is known about the underlying adaptation processes. Here, we used micrometer-scale defined surface topographies as a model to describe the phenotype of hMSCs during this adaptation to their new environment. We used well established techniques to compare hMSCs cultured on flat and topographically enhanced polystyreneand observed dramatically changed cell morphologies accompanied by shrinkage of cytoplasm and nucleus, a decreased overall cellular metabolism, and slower cell cycle progression resulting in a lower proliferation rate in cells exposed to surface topographies. We hypothesized that this reduction in proliferation rate effects their sensitivity to certain cancer drugs, which was confirmed by higher survival rate of hMSCs cultured on topographies exposed to paclitaxel. Thus, micro-topographies can be used as a model system to mimic the natural cell micro-environment, and be a powerful tool to optimize cell treatment in vitro.


Asunto(s)
Adaptación Fisiológica , Células Madre Mesenquimatosas/citología , Anciano , Ciclo Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Femenino , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Paclitaxel/farmacología , Fenotipo , Propiedades de Superficie
7.
Adipocyte ; 8(1): 190-200, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31037987

RESUMEN

Long-term weight loss maintenance is a problem of overweight and obesity. Changes of gene expression during weight loss (WL) by calorie restriction (CR) are linked to the risk of weight regain (WR). However, detailed information on genes/proteins involved in the mechanism is still lacking. Therefore, we developed an in-vitro model system for glucose restriction (GR) and refeeding (RF) to uncover proteome differences between GR with RF vs normal feeding, of which we explored the relation with WR after WL. Human Simpson-Golabi-Behmel Syndrome cells were subjected to changing levels of glucose to mimic the condition of CR and RF. Proteome profiling was performed by liquid chromatography tandem mass spectrometry. This in-vitro model revealed 44 proteins differentially expressed after GR and RF versus feeding including proteins of the focal adhesions. Four proteins showed a persistent up- or down-regulation: liver carboxylesterase (CES1), mitochondrial superoxide dismutase [Mn] (SOD2), alpha-crystallin B-chain (CRYAB), alpha-enolase (ENO1). In-vivo weight loss-induced RNA expression changes linked CES1, CRYAB and ENO1 to WR. Moreover, of these 44 proteins, CES1 and glucosidase II alpha subunit (GANAB) during follow up correlated with WR. Correlation clustering of in-vivo protein expression data indicated an interaction of these proteins with structural components of the focal adhesions and cytoplasmic filaments in the adipocytes.


Asunto(s)
Adipocitos/metabolismo , Biomarcadores de Tumor/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Unión al ADN/metabolismo , Glucosa/deficiencia , Glucosidasas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Aumento de Peso , Cadena B de alfa-Cristalina/metabolismo , Adipocitos/citología , Biomarcadores de Tumor/genética , Hidrolasas de Éster Carboxílico/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Glucosa/metabolismo , Glucosidasas/genética , Humanos , Fosfopiruvato Hidratasa/genética , Proteínas Supresoras de Tumor/genética , Cadena B de alfa-Cristalina/genética
8.
Acta Biomater ; 83: 277-290, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30394345

RESUMEN

Tenocytes, the main cell type of the tendon, require mechanical stimuli for their proper function. When the tenocyte environment changes due to tissue damage or by transferring tenocytes from their native environment into cell culture, the signals from the tenocyte niche are lost, leading towards a decline of phenotypic markers. It is known that micro-topographies can influence cell fate by the physical cues they provide. To identify the optimal topography-induced biomechanical niche in vitro, we seeded tenocytes on the TopoChip, a micro-topographical screening platform, and measured expression of the tendon transcription factor Scleraxis. Through machine learning algorithms, we associated elevated Scleraxis levels with topological design parameters. Fabricating micro-topographies with optimal surface characteristics on larger surfaces allowed finding an improved expression of multiple tenogenic markers. However, long-term confluent culture conditions coincided with osteogenic marker expression and the loss of morphological characteristics. In contrast, passaging tenocytes which migrated from the tendon directly on the topography resulted in prolonged elongated morphology and elevated Scleraxis levels. This research provides new insights into how micro-topographies influence tenocyte cell fate, and supports the notion that micro-topographical design can be implemented in a new generation of tissue culture platforms for supporting the phenotype of tenocytes. STATEMENT OF SIGNIFICANCE: The challenge in controlling in vitro cell behavior lies in controlling the complex culture environment. Here, we present for the first time the use of micro-topographies as a biomechanical niche to support the phenotype of tenocytes. For this, we applied the TopoChip platform, a screening tool with 2176 unique micro-topographies for identifying feature characteristics associated with elevated Scleraxis expression, a tendon related marker. Large area fabrication of micro-topographies with favorable characteristics allowed us to find a beneficial influence on other tenogenic markers as well. Furthermore, passaging cells is more beneficial for Scleraxis marker expression and tenocyte morphology compared to confluent conditions. This study presents important insights for the understanding of tenocyte behavior in vitro, a necessary step towards tendon engineering.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Tendones/metabolismo , Tenocitos/metabolismo , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Ratas , Tendones/citología , Tenocitos/citología , Ingeniería de Tejidos
9.
Am J Clin Nutr ; 105(5): 1054-1062, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28298393

RESUMEN

Background: Weight loss (WL) is often followed by weight regain after an energy-restricted dietary intervention (DI). When people are following a diet, the volume of an adipocyte decreases by loss of triglycerides, which creates stress between the cell contents and the surrounding extracellular matrix (ECM). Previously, we observed that genetic variations in ECM genes are associated with an increased risk of weight regain.Objective: We investigated the relation between the expression of ECM genes during WL and a period of weight stabilization (WS) and the risk of weight regain.Design: In this randomized controlled trial, 61 healthy overweight or obese participants followed either a 5-wk very-low-calorie diet (VLCD; 500 kcal/d) or a 12-wk low-calorie diet (1250 kcal/d) (WL period) with a subsequent 4-wk WS period and a 9-mo follow-up. The WL and WS periods combined were considered the DI. Abdominal subcutaneous adipose tissue biopsy samples were collected for microarray analysis. Gene expression changes for a broad set of ECM-related genes were correlated with the weight-regain percentage (WR%).Results: A total of 26 of the 277 genes were significantly correlated with WR% during WL, WS, or the DI periods. Most correlations were observed in the VLCD group during the WS period. Four genes code for leukocyte-specific receptors. These and other genes belong to a group of 26 genes, among which the expression changes were highly correlated (r ≥ 0.7, P ≤ 0.001). This group could be divided into 3 subclusters linking to 2 biological processes-leukocyte integrin gene activity and ECM remodeling-and a link to insulin sensitivity was also apparent.Conclusions: Our present findings indicate the importance of adipose tissue leukocytes for the risk of weight regain. ECM modification also seems to be involved, and we observed a link to insulin sensitivity. This trial was registered at clinicaltrials.gov as NCT01559415.


Asunto(s)
Peso Corporal , Ingestión de Energía , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Leucocitos/metabolismo , Obesidad/metabolismo , Grasa Subcutánea Abdominal , Adipocitos/metabolismo , Mantenimiento del Peso Corporal , Restricción Calórica , Dieta Reductora , Femenino , Expresión Génica , Humanos , Resistencia a la Insulina , Integrinas/genética , Masculino , Persona de Mediana Edad , Obesidad/dietoterapia , Obesidad/genética , Riesgo , Grasa Subcutánea Abdominal/citología , Grasa Subcutánea Abdominal/metabolismo , Triglicéridos/metabolismo , Aumento de Peso , Pérdida de Peso/fisiología
10.
Br J Nutr ; 116(4): 576-92, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27323230

RESUMEN

Primary cilia are organelles that are present on many different cell types, either transiently or permanently. They play a crucial role in receiving signals from the environment and passing these signals to other parts of the cell. In that way, they are involved in diverse processes such as adipocyte differentiation and olfactory sensation. Mutations in genes coding for ciliary proteins often have pleiotropic effects and lead to clinical conditions, ciliopathies, with multiple symptoms. In this study, we reviewed observations from ciliopathies with obesity as one of the symptoms. It shows that variation in cilia-related genes is itself not a major cause of obesity in the population but may be a part of the multifactorial aetiology of this complex condition. Both common polymorphisms and rare deleterious variants may contribute to the obesity risk. Genotype-phenotype relationships have been noticed. Among the ciliary genes, obesity differs with regard to severity and age of onset, which may relate to the influence of each gene on the balance between pro- and anti-adipogenic processes. Analysis of the function and location of the proteins encoded by these ciliary genes suggests that obesity is more linked to activities at the basal area of the cilium, including initiation of the intraflagellar transport, but less to the intraflagellar transport itself. Regarding the role of cilia, three possible mechanistic processes underlying obesity are described: adipogenesis, neuronal food intake regulation and food odour perception.


Asunto(s)
Cilios/fisiología , Obesidad/etiología , Adipogénesis/fisiología , Transporte Biológico , Diferenciación Celular , Cilios/genética , Variación Genética , Humanos , Mutación , Obesidad/fisiopatología , Factores de Riesgo
11.
Br J Nutr ; 115(5): 913-20, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26759119

RESUMEN

Initial successful weight loss is often followed by weight regain after the dietary intervention. Compared with lean people, cellular stress in adipose tissue is increased in obese subjects. However, the relation between cellular stress and the risk for weight regain after weight loss is unclear. Therefore, we determined the expression levels of stress proteins during weight loss and weight maintenance in relation to weight regain. In vivo findings were compared with results from in vitro cultured human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. In total, eighteen healthy subjects underwent an 8-week diet programme with a 10-month follow-up. Participants were categorised as weight maintainers or weight regainers (WR) depending on their weight changes during the intervention. Abdominal subcutaneous adipose tissue biopsies were obtained before and after the diet and after the follow-up. In vitro differentiated SGBS adipocytes were starved for 96 h with low (0·55 mm) glucose. Levels of stress proteins were determined by Western blotting. WR showed increased expressions of ß-actin, calnexin, heat shock protein (HSP) 27, HSP60 and HSP70. Changes of ß-actin, HSP27 and HSP70 are linked to HSP60, a proposed key factor in weight regain after weight loss. SGBS adipocytes showed increased levels of ß-actin and HSP60 after 96 h of glucose restriction. The increased level of cellular stress proteins in the adipose tissue of WR probably resides in the adipocytes as shown by in vitro experiments. Cellular stress accumulated in adipose tissue during weight loss may be a risk factor for weight regain.


Asunto(s)
Adipocitos/metabolismo , Estrés Fisiológico , Aumento de Peso , Pérdida de Peso , Actinas/genética , Actinas/metabolismo , Adulto , Arritmias Cardíacas/metabolismo , Biopsia , Índice de Masa Corporal , Calnexina/genética , Calnexina/metabolismo , Células Cultivadas , Chaperonina 60/genética , Chaperonina 60/metabolismo , Femenino , Estudios de Seguimiento , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Gigantismo/metabolismo , Glucosa/metabolismo , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Cardiopatías Congénitas/metabolismo , Proteínas de Choque Térmico , Humanos , Discapacidad Intelectual/metabolismo , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares , Grasa Subcutánea Abdominal/metabolismo , Adulto Joven
12.
Nutr Metab (Lond) ; 12: 37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500687

RESUMEN

BACKGROUND: Energy restriction causes adaptations in energy expenditure (total-,TEE; resting-,REE; activity induced-,AEE). OBJECTIVE: To determine if changes in the levels of proteins involved in adipocyte glucose and fatty acid metabolism as indicators for energy deficiency are related to adaptations in energy expenditure during weight loss. METHODS: Forty-eight healthy subjects (18 men, 30 women), mean ± SD age 42 ± 8 y and BMI 31.4 ± 2.8 kg/m(2), followed a very low energy diet for 8 wk. Protein levels of fatty acid binding protein 4 (FABP4), fructose-bisphosphate aldolase C (AldoC) and short chain 3-hydroxyacyl-CoA dehydrogenase (HADHsc) (adipose tissue biopsy, western blot), TEE (doubly labeled water), REE (ventilated hood), and AEE were assessed before and after the 8-wk diet. RESULTS: There was a positive correlation between the decrease in AldoC and the decrease in TEE (R = 0.438, P < 0.01) and the decrease change in AEE (R = 0.439, P < 0.01). Furthermore, there was a negative correlation between the increases in HADHsc and the decrease in REE (R = 0.343, P < 0.05). CONCLUSION: The decrease in AldoC correlated with the decrease in AEE, which may be explained by a decreased glycolytic flux. Additionally, the change in HADHsc, a crucial enzyme for a step in beta-oxidation, correlated with the adaptation in REE. CLINICAL TRIAL REGISTRATION NUMBER: NCT01015508 at clinicaltrials.gov.

13.
PLoS One ; 9(7): e102994, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25068282

RESUMEN

Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds.


Asunto(s)
Macrófagos , Cicatrización de Heridas , Animales , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Genes Reporteros , Inmunohistoquímica , Macrófagos/clasificación , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Piel/lesiones , Piel/metabolismo , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA