Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 18(11): e0285580, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37910565

RESUMEN

BACKGROUND: Wide resection remains the cornerstone of localized soft-tissue sarcomas (STS) treatment. Neoadjuvant radiation therapy (NRT) may decrease the risk of local recurrences; however, its effectiveness for different histological STS subtypes has not been systematically investigated. The proposed prospective study evaluates the NRT response in STS using liquid biopsies and the correlation of multiparametric magnetic resonance imaging (mpMRI) with histopathology and immunohistochemistry. METHODS: Patients with localized high-grade STS, who qualify for NRT, are included in this study. LIQUID BIOPSIES: Quantification of circulating tumor DNA (ctDNA) in patient blood samples is performed by targeted next-generation sequencing. Soft-tissue sarcoma subtype-specific panel sequencing in combination with patient-specific exome sequencing allows the detection of individual structural variants and point mutations. Circulating free DNA is isolated from peritherapeutically collected patient plasma samples and ctDNA quantified therein. Identification of breakpoints is carried out using FACTERA. Bioinformatic analysis is performed using samtools, picard, fgbio, and the MIRACUM Pipeline. MPMRI: Combination of conventional MRI sequences with diffusion-weighted imaging, intravoxel-incoherent motion, and dynamic contrast enhancement. Multiparametric MRI is performed before, during, and after NRT. We aim to correlate mpMRI data with the resected specimen's macroscopical, histological, and immunohistochemical findings. RESULTS: Preliminary data support the notion that quantification of ctDNA in combination with tumor mass characterization through co-registration of mpMRI and histopathology can predict NRT response of STS. CLINICAL RELEVANCE: The methods presented in this prospective study are necessary to assess therapy response in heterogeneous tumors and lay the foundation of future patient- and tumor-specific therapy concepts. These methods can be applied to various tumor entities. Thus, the participation and support of a wider group of oncologic surgeons are needed to validate these findings on a larger patient cohort.


Asunto(s)
ADN Tumoral Circulante , Imágenes de Resonancia Magnética Multiparamétrica , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , ADN Tumoral Circulante/genética , Estudios Prospectivos , Terapia Neoadyuvante , Sarcoma/diagnóstico por imagen , Sarcoma/genética , Sarcoma/radioterapia
2.
Theranostics ; 13(5): 1594-1606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056570

RESUMEN

Rationale: To establish a spatially exact co-registration procedure between in vivo multiparametric magnetic resonance imaging (mpMRI) and (immuno)histopathology of soft tissue sarcomas (STS) to identify imaging parameters that reflect radiation therapy response of STS. Methods: The mpMRI-Protocol included diffusion-weighted (DWI), intravoxel-incoherent motion (IVIM), and dynamic contrast-enhancing (DCE) imaging. The resection specimen was embedded in 6.5% agarose after initial fixation in formalin. To ensure identical alignment of histopathological sectioning and in vivo imaging, an ex vivo MRI scan of the specimen was rigidly co-registered with the in vivo mpMRI. The deviating angulation of the specimen to the in vivo location of the tumor was determined. The agarose block was trimmed accordingly. A second ex vivo MRI in a dedicated localizer with a 4 mm grid was performed, which was matched to a custom-built sectioning machine. Microtomy sections were stained with hematoxylin and eosin. Immunohistochemical staining was performed with anti-ALDH1A1 antibodies as a radioresistance and anti-MIB1 antibodies as a proliferation marker. Fusion of the digitized microtomy sections with the in vivo mpMRI was accomplished through nonrigid co-registration to the in vivo mpMRI. Co-registration accuracy was qualitatively assessed by visual assessment and quantitatively evaluated by computing target registration errors (TRE). Results: The study sample comprised nine tumor sections from three STS patients. Visual assessment after nonrigid co-registration showed a strong morphological correlation of the histopathological specimens with ex vivo MRI and in vivo mpMRI after neoadjuvant radiation therapy. Quantitative assessment of the co-registration procedure using TRE analysis of different pairs of pathology and MRI sections revealed highly accurate structural alignment, with a total median TRE of 2.25 mm (histology - ex vivo MRI), 2.22 mm (histology - in vivo mpMRI), and 2.02 mm (ex vivo MRI - in vivo mpMRI). There was no significant difference between TREs of the different pairs of sections or caudal, middle, and cranial tumor parts, respectively. Conclusion: Our initial results show a promising approach to obtaining accurate co-registration between histopathology and in vivo MRI for STS. In a larger cohort of patients, the method established here will enable the prospective identification and validation of in vivo imaging biomarkers for radiation therapy response prediction and monitoring in STS patients via precise molecular and cellular correlation.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Estudios Prospectivos , Sefarosa , Imagen por Resonancia Magnética/métodos , Sarcoma/diagnóstico por imagen , Sarcoma/radioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA