Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Cell Biol ; 214(4): 433-44, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27502484

RESUMEN

The flux of Ca(2+) from the endoplasmic reticulum (ER) to mitochondria regulates mitochondria metabolism. Within tumor tissue, mitochondria metabolism is frequently repressed, leading to chemotherapy resistance and increased growth of the tumor mass. Therefore, altered ER-mitochondria Ca(2+) flux could be a cancer hallmark, but only a few regulatory proteins of this mechanism are currently known. One candidate is the redox-sensitive oxidoreductase TMX1 that is enriched on the mitochondria-associated membrane (MAM), the site of ER-mitochondria Ca(2+) flux. Our findings demonstrate that cancer cells with low TMX1 exhibit increased ER Ca(2+), accelerated cytosolic Ca(2+) clearance, and reduced Ca(2+) transfer to mitochondria. Thus, low levels of TMX1 reduce ER-mitochondria contacts, shift bioenergetics away from mitochondria, and accelerate tumor growth. For its role in intracellular ER-mitochondria Ca(2+) flux, TMX1 requires its thioredoxin motif and palmitoylation to target to the MAM. As a thiol-based tumor suppressor, TMX1 increases mitochondrial ATP production and apoptosis progression.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Tiorredoxinas/metabolismo , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Metabolismo Energético , Glucosa/farmacología , Células HeLa , Humanos , Lipoilación , Membranas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
J Biol Chem ; 287(22): 18820-30, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22500019

RESUMEN

The two age-prevalent diseases Alzheimer disease and type 2 diabetes mellitus share many common features including the deposition of amyloidogenic proteins, amyloid ß protein (Aß) and amylin (islet amyloid polypeptide), respectively. Recent evidence suggests that both Aß and amylin may express their effects through the amylin receptor, although the precise mechanisms for this interaction at a cellular level are unknown. Here, we studied this by generating HEK293 cells with stable expression of an isoform of the amylin receptor family, amylin receptor-3 (AMY3). Aß1-42 and human amylin (hAmylin) increase cytosolic cAMP and Ca(2+), trigger multiple pathways involving the signal transduction mediators protein kinase A, MAPK, Akt, and cFos. Aß1-42 and hAmylin also induce cell death during exposure for 24-48 h at low micromolar concentrations. In the presence of hAmylin, Aß1-42 effects on HEK293-AMY3-expressing cells are occluded, suggesting a shared mechanism of action between the two peptides. Amylin receptor antagonist AC253 blocks increases in intracellular Ca(2+), activation of protein kinase A, MAPK, Akt, cFos, and cell death, which occur upon AMY3 activation with hAmylin, Aß1-42, or their co-application. Our data suggest that AMY3 plays an important role by serving as a receptor target for actions Aß and thus may represent a novel therapeutic target for development of compounds to treat neurodegenerative conditions such as Alzheimer disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/metabolismo , Transducción de Señal , Línea Celular , Humanos , Inmunohistoquímica
3.
Sci Signal ; 3(147): pe41, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21062991

RESUMEN

Long regarded as mere structural support for neurons, neuroglial cells are now considered pivotal for brain metabolism, the blood-brain barrier, cerebral hemodynamics, and neuronal function. Multitasking by glia involves numerous signaling and effector pathways that control various processes, including neurotransmitter uptake and release of gliotransmitters, such as glutamate or adenosine 5'-triphosphate (ATP). Acidosis of cerebrospinal fluid causes ATP release from astrocytic glia at the ventral brainstem surface, which excites neighboring brainstem neurons that stimulate neurons in the pre-Bötzinger complex (preBötC), which controls inspiratory breathing movements. New insights into glial regulation of complex behavior, and particularly into respiratory circuit function, are evolving from application of genetically engineered optical stimulation and Ca(2+) imaging tools, combined with other molecular and electrophysiological approaches. These advances in technology will enable direct analyses of respiratory-related neuron-glia interactions not only at the ventral brainstem surface but also within the preBötC, which generates a vital brain rhythm.


Asunto(s)
Encéfalo/metabolismo , Neuroglía/fisiología , Mecánica Respiratoria/fisiología , Transducción de Señal/fisiología , Adenosina Trifosfato/metabolismo , Ácido Glutámico/metabolismo , Humanos , Neuroglía/metabolismo , Neuronas/metabolismo
4.
Respir Physiol Neurobiol ; 172(3): 94-105, 2010 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-20444435

RESUMEN

Hypothetic mechanisms for respirogenic methylxanthine actions include blockade of adenosine receptors or phosphodiesterase-4 (PDE4) in inspiratory pre-Bötzinger complex (preBötC) networks. Here, we studied this by analyzing stimulating caffeine and theophylline actions on mu-opioid-depressed inspiratory-related rhythm in the ventrolateral aspect of rat brainstem slices. The methylxanthines restored DAMGO (0.5-1 microM) depressed rhythm only at >1mM, which is approximately 10-fold higher than selective for adenosine receptors. Adenosine receptor blockers did neither counter DAMGO inhibition nor change control rhythm, similar to adenosine (0.1-2.5 mM). The specific PDE4 blocker rolipram (5 microM) restored DAMGO-depressed rhythm incompletely, but effectively reversed similar inhibition by clinical mu-agonist (fentanyl, 0.1 microM). At 0.25 microM, rolipram boosted incomplete recovery by 1 mM theophylline of DAMGO-depressed rhythm. Findings indicate that methylxanthines excite rhythmogenic preBötC networks via blockade of cAMP dependent PDE4 and suggest that specific PDE4 inhibitors (plus low methylxanthine doses) stimulate breathing effectively. We discuss why methylxanthine doses for preBötC stimulation need to be higher than those for respirogenic effects in vivo.


Asunto(s)
Analgésicos Opioides/antagonistas & inhibidores , Analgésicos Opioides/farmacología , Inhibidores de Fosfodiesterasa 4 , Inhibidores de Fosfodiesterasa/farmacología , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/prevención & control , Xantinas/farmacología , Antagonistas del Receptor de Adenosina A1 , Antagonistas del Receptor de Adenosina A2 , Animales , Animales Recién Nacidos , Cafeína/farmacología , Electrofisiología , Encefalina Ala(2)-MeFe(4)-Gli(5)/antagonistas & inhibidores , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Fentanilo/antagonistas & inhibidores , Fentanilo/farmacología , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Antagonistas de Receptores Purinérgicos P1 , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores Opioides mu/efectos de los fármacos , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos , Rolipram/farmacología , Teofilina/farmacología
5.
Adv Exp Med Biol ; 669: 123-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20217334

RESUMEN

Caffeine counters endogenous or drug-evoked depression of breathing in (preterm) infants. Despite its common clinical use, little is known on central nervous mechanisms of its stimulatory respiratory action. We show that millimolar concentrations of caffeine are needed in perinatal rat en bloc medullas and medullary slices for stimulation of fictive inspiratory rhythms that were either endogenously slow in fetuses or depressed by prostagandins or opioids. Findings suggests that caffeine blocks phospodiesterase-4 thus raising cAMP in rhythmogenic pre-Bötzinger complex (preBötC) networks and/or cells driving the inspiratory preBötC.


Asunto(s)
Analgésicos Opioides/farmacología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Cafeína/farmacología , Inhalación/efectos de los fármacos , Inhalación/fisiología , Animales , Animales Recién Nacidos , Tronco Encefálico/metabolismo , AMP Cíclico/metabolismo , Técnicas In Vitro , Periodicidad , Ratas
6.
J Neurosci ; 30(11): 3947-58, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20237265

RESUMEN

Glia modulate neuronal activity by releasing transmitters in a process called gliotransmission. The role of this process in controlling the activity of neuronal networks underlying motor behavior is unknown. ATP features prominently in gliotransmission; it also contributes to the homeostatic ventilatory response evoked by low oxygen through mechanisms that likely include excitation of preBötzinger complex (preBötC) neural networks, brainstem centers critical for breathing. We therefore inhibited glial function in rhythmically active inspiratory networks in vitro to determine whether glia contribute to preBötC ATP sensitivity. Glial toxins markedly reduced preBötC responses to ATP, but not other modulators. Furthermore, since preBötC glia responded to ATP with increased intracellular Ca(2+) and glutamate release, we conclude that glia contribute to the ATP sensitivity of preBötC networks, and possibly the hypoxic ventilatory response. Data reveal a role for glia in signal processing within brainstem motor networks that may be relevant to similar networks throughout the neuraxis.


Asunto(s)
Adenosina Trifosfato/fisiología , Inhalación/fisiología , Red Nerviosa/fisiología , Neuroglía/fisiología , Periodicidad , Receptores Purinérgicos/fisiología , Centro Respiratorio/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Adenosina Trifosfato/farmacología , Animales , Animales Recién Nacidos , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Células Cultivadas , Inhalación/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Neuroglía/efectos de los fármacos , Agonistas Purinérgicos , Ratas , Ratas Sprague-Dawley , Centro Respiratorio/efectos de los fármacos
7.
Neurosci Lett ; 401(1-2): 194-8, 2006 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-16581183

RESUMEN

Ventilation of the lungs is mediated by neurons of the respiratory network in the lower brainstem. The activity of rhythmogenic respiratory network neurons seems to depend greatly on cellular levels of the second messenger cAMP. Accordingly, depression of breathing in (preterm) infants associated with clinical administration of opioids and prostaglandins results likely from a fall of cAMP in these cells caused by G(i/o) proteins that are activated via mu-opiate or EP(3) prostanoid receptors, respectively. Typically, such drug-induced depression of infant breathing is treated with high doses of methylxanthines that have notable adverse effects. It was the aim of our study to investigate whether clinically applicable blockers of cAMP-hydrolyzing phosphodiesterase-4 counteract the inhibition of the respiratory network associated with a drug-induced fall of cAMP. For this purpose, inspiratory-related cervical nerve activity was measured in isolated brainstem-spinal cord preparations from newborn rats. Respiratory frequency was depressed by >80% (from >5 bursts/min to <1 burst/min) with nociceptin (1 microM) which decreases cAMP via a G(i/o) protein-coupled opioid-like receptor. The nociceptin-induced respiratory depression was reversed by the activator of adenylyl cyclase, forskolin (5-25 microM) and the phosphodiesterase-4 blockers rolipram (0.1-1 microM) and RO-201724 (1-5 microM). Blocking phosphodiesterases 3 and 5 with milrinone (25-100 microM) and zaprinast (25-100 microM), respectively, was not effective. The results indicate that phosphodiesterase-4 blockers are strong stimulants of the respiratory network. We hypothesize that these or related agents may be potent tools for a treatment of drug-induced disturbances of breathing in (preterm) infants.


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Apnea/tratamiento farmacológico , AMP Cíclico/biosíntesis , Centro Respiratorio/metabolismo , Rombencéfalo/metabolismo , Médula Espinal/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Apnea/inducido químicamente , Apnea/fisiopatología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Vías Eferentes/efectos de los fármacos , Vías Eferentes/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Proteínas de Unión al GTP/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Humanos , Técnicas In Vitro , Recién Nacido , Recien Nacido Prematuro/fisiología , Narcóticos/efectos adversos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Prostaglandinas/efectos adversos , Ratas , Receptores Opioides mu/efectos de los fármacos , Receptores Opioides mu/metabolismo , Receptores de Prostaglandina E/efectos de los fármacos , Receptores de Prostaglandina E/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E , Centro Respiratorio/efectos de los fármacos , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/tratamiento farmacológico , Insuficiencia Respiratoria/prevención & control , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos , Rombencéfalo/efectos de los fármacos , Médula Espinal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA