Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS Pathog ; 17(11): e1009743, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34797899

RESUMEN

Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2.


Asunto(s)
COVID-19/etiología , Receptores de Superficie Celular/fisiología , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/fisiología , Animales , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores de Superficie Celular/antagonistas & inhibidores , Internalización del Virus , Tirosina Quinasa del Receptor Axl , Tratamiento Farmacológico de COVID-19
2.
J Virol ; 95(18): e0107321, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34232742

RESUMEN

Sudan virus (SUDV) is one of five filoviruses that compose the genus Ebolavirus that has been responsible for episodic outbreaks in Central Africa. While the SUDV glycoprotein (GP) structure has been solved, GP residues that affect SUDV entry have not been extensively examined; many of the entry characteristics of SUDV GP are inferred from studies with the Zaire Ebola virus (EBOV) GP. Here, we investigate the effect on virus entry of a naturally occurring polymorphism in SUDV GP. Two of the earliest SUDV isolates contain glutamine at residue 95 (Q95) within the base region of GP1, whereas more recent SUDV isolates and GPs from all other ebolaviruses carry lysine at this position (K95). A K95Q change dramatically decreased titers of pseudovirions bearing SUDV GP, whereas the K95Q substitution in EBOV GP had no effect on titer. We evaluated virus entry to identify SUDV GP Q95-specific entry defects. The presence of Q95 in either EBOV or SUDV GP resulted in enhanced sensitivity of GP to proteolytic processing, yet this could not account for the SUDV-specific decrease in GP Q95 infectivity. We found that SUDV GP Q95 pseudovirions were more sensitive to imipramine, a GP-destabilizing antiviral. In contrast, SUDV GP K95 was more stable, requiring elevated temperatures to inhibit virus infection. Thus, the residue present at GP 95 has a critical role in stabilizing the SUDV glycoprotein, whereas this polymorphism has no effect on EBOV GP stability. These results provide novel insights into filovirus species-specific GP structure that affects virus infectivity. IMPORTANCE Filovirus outbreaks are associated with significant morbidity and mortality. Understanding the structural constraints of filoviral GPs that control virus entry into cells is critical for rational development of novel antivirals to block infection. Here, we identify a naturally occurring glutamine (Q) to lysine (K) polymorphism at residue 95 as a critical determinant of Sudan virus GP stability but not Zaire Ebola virus GP stability. We propose that glutamine at residue 95 in Sudan virus GP mediates decreased virus entry, thereby reducing infectivity. Our findings highlight a unique structural characteristic of Sudan virus GP that affects GP-mediated functionality. Further, it provides a cautionary note for the development of future broad-spectrum filovirus antivirals.


Asunto(s)
Ebolavirus/fisiología , Glicoproteínas/química , Fiebre Hemorrágica Ebola/virología , Especificidad del Huésped , Polimorfismo Genético , Proteínas del Envoltorio Viral/química , Internalización del Virus , Secuencia de Aminoácidos , Animales , Células CHO , Chlorocebus aethiops , Cricetulus , Femenino , Glicoproteínas/genética , Fiebre Hemorrágica Ebola/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Estabilidad Proteica , Homología de Secuencia , Células Vero , Proteínas del Envoltorio Viral/genética
3.
PLoS Negl Trop Dis ; 13(12): e0007819, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31825972

RESUMEN

BACKGROUND: Ebolavirus (EBOV) outbreaks, while sporadic, cause tremendous morbidity and mortality. No therapeutics or vaccines are currently licensed; however, a vaccine has shown promise in clinical trials. A critical step towards development of effective therapeutics is a better understanding of factors that govern host susceptibility to this pathogen. As macrophages are an important cell population targeted during virus replication, we explore the effect of cytokine polarization on macrophage infection. METHODS/MAIN FINDINGS: We utilized a BSL2 EBOV model virus, infectious, recombinant vesicular stomatitis virus encoding EBOV glycoprotein (GP) (rVSV/EBOV GP) in place of its native glycoprotein. Macrophages polarized towards a M2-like anti-inflammatory state by combined IL-4 and IL-13 treatment were more susceptible to rVSV/EBOV GP, but not to wild-type VSV (rVSV/G), suggesting that EBOV GP-dependent entry events were enhanced by these cytokines. Examination of RNA expression of known surface receptors that bind and internalize filoviruses demonstrated that IL-4/IL-13 stimulated expression of the C-type lectin receptor DC-SIGN in human macrophages and addition of the competitive inhibitor mannan abrogated IL-4/IL-13 enhanced infection. Two murine DC-SIGN-like family members, SIGNR3 and SIGNR5, were upregulated by IL-4/IL-13 in murine macrophages, but only SIGNR3 enhanced virus infection in a mannan-inhibited manner, suggesting that murine SIGNR3 plays a similar role to human DC-SIGN. In vivo IL-4/IL-13 administration significantly increased virus-mediated mortality in a mouse model and transfer of ex vivo IL-4/IL-13-treated murine peritoneal macrophages into the peritoneal cavity of mice enhanced pathogenesis. SIGNIFICANCE: These studies highlight the ability of macrophage polarization to influence EBOV GP-dependent virus replication in vivo and ex vivo, with M2a polarization upregulating cell surface receptor expression and thereby enhancing virus replication. Our findings provide an increased understanding of the host factors in macrophages governing susceptibility to filoviruses and identify novel murine receptors mediating EBOV entry.


Asunto(s)
Ebolavirus/fisiología , Interacciones Huésped-Patógeno , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Macrófagos/inmunología , Macrófagos/virología , Internalización del Virus , Animales , Modelos Animales de Enfermedad , Femenino , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Masculino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA