Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Hematol ; 99(4): 543-554, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38293789

RESUMEN

BMP6 is an iron-sensing cytokine whose transcription in liver sinusoidal endothelial cells (LSECs) is enhanced by high iron levels, a step that precedes the induction of the iron-regulatory hormone hepcidin. While several reports suggested a cell-autonomous induction of Bmp6 by iron-triggered signals, likely via sensing of oxidative stress by the transcription factor NRF2, other studies proposed the dominant role of a paracrine yet unidentified signal released by iron-loaded hepatocytes. To further explore the mechanisms of Bmp6 transcriptional regulation, we used female mice aged 10-11 months, which are characterized by hepatocytic but not LSEC iron accumulation, and no evidence of systemic iron overload. We found that LSECs of aged mice exhibit increased Bmp6 mRNA levels as compared to young controls, but do not show a transcriptional signature characteristic of activated NFR2-mediated signaling in FACS-sorted LSECs. We further observed that primary murine LSECs derived from both wild-type and NRF2 knock-out mice induce Bmp6 expression in response to iron exposure. By analyzing transcriptomic data of FACS-sorted LSECs from aged versus young mice, as well as early after iron citrate injections, we identified ETS1 as a candidate transcription factor involved in Bmp6 transcriptional regulation. By performing siRNA-mediated knockdown, small-molecule treatments, and chromatin immunoprecipitation in primary LSECs, we show that Bmp6 transcription is regulated by iron via ETS1 and p38/JNK MAP kinase-mediated signaling, at least in part independently of NRF2. Thereby, these findings identify the new components of LSEC iron sensing machinery broadly associated with cellular stress responses.


Asunto(s)
Células Endoteliales , Hierro , Femenino , Ratones , Animales , Hierro/metabolismo , Células Endoteliales/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Hepcidinas/genética , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones Noqueados , Proteína Morfogenética Ósea 6/genética
3.
Front Oncol ; 12: 1048741, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387080

RESUMEN

Background: TRAIL (TNF-related apoptosis inducing ligand) exhibits selective proapoptotic activity in multiple tumor types, while sparing normal cells. This selectivity makes TRAIL an attractive therapeutic candidate. However, despite encouraging activity in preclinical models, clinical trials with TRAIL mimetics/death receptor agonists demonstrated insufficient activity, largely due to emerging resistance to these agents. Herein, we investigated the cytotoxic activity of a novel, TRAIL-based chimeric protein AD-O51.4 combining TRAIL and VEGFA-derived peptide sequences, in hematological malignancies. We characterize key molecular mechanisms leading to resistance and propose rational pharmacological combinations sensitizing cells to AD-O51.4. Methods: Sensitivity of DLBCL, classical Hodgkin lymphoma, (cHL), Burkitt lymphoma (BL) and acute myeloid leukemia (AML) to AD-O51.4 was assessed in vitro with MTS assay and apoptosis tests (Annexin V/PI staining). Markers of apoptosis were assessed using immunoblotting, flow cytometry or fluorogenic caspase cleavage assays. Resistant cell lines were obtained by incubation with increasing doses of AD-O51.4. Transcriptomic analyses were performed by RNA sequencing. Sensitizing effects of selected pathway modulators (BCL2, dynamin and HDAC inhibitors) were assessed using MTS/apoptosis assays. Results: AD-O51.4 exhibited low-nanomolar cytotoxic activity in DLBCL cells, but not in other lymphoid or AML cell lines. AD-O51.4 induced death-receptor (DR) mediated, caspase-dependent apoptosis in sensitive DLBCL cells, but not in primary resistant cells. The presence of DRs and caspase 8 in cancer cells was crucial for AD-O51.4-induced apoptosis. To understand the potential mechanisms of resistance in an unbiased way, we engineered AD-O51.4-resistant cells and evaluated resistance-associated transcriptomic changes. Resistant cells exhibited changes in the expression of multiple genes and pathways associated with apoptosis, endocytosis and HDAC-dependent epigenetic reprogramming, suggesting potential therapeutic strategies of sensitization to AD-O51.4. In subsequent analyses, we demonstrated that HDAC inhibitors, BCL2 inhibitors and endocytosis/dynamin inhibitors sensitized primary resistant DLBCL cells to AD-O51.4. Conclusions: Taken together, we identified rational pharmacologic strategies sensitizing cells to AD-O51.4, including BCL2, histone deacetylase inhibitors and dynamin modulators. Since AD-O51.4 exhibits favorable pharmacokinetics and an acceptable safety profile, its further clinical development is warranted. Identification of resistance mechanisms in a clinical setting might indicate a personalized pharmacological approach to override the resistance.

4.
Biomedicines ; 10(4)2022 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35453671

RESUMEN

Sepsis involves life-threatening organ dysfunction caused by a dysregulated host response to infection. Despite three decades of efforts and multiple clinical trials, no treatment, except antibiotics and supportive care, has been approved for this devastating syndrome. Simultaneously, numerous preclinical studies have shown the effectiveness of oncology-indicated drugs in ameliorating sepsis. Here we focus on cataloging these efforts with both oncology-approved and under-development drugs that have been repositioned to treat bacterial-induced sepsis models. In this context, we also envision the exciting prospect for further standard and oncology drug combination testing that could ultimately improve clinical outcomes in sepsis.

5.
J Exp Clin Cancer Res ; 40(1): 391, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903245

RESUMEN

BACKGROUND: Squamous cell carcinoma (SCC) of the skin is a common form of nonmelanoma skin cancer. Monocyte chemotactic protein 1-induced protein 1 (MCPIP1), also called Regnase-1, is an RNase with anti-inflammatory properties. In normal human skin, its expression is predominantly restricted to the suprabasal epidermis. The main aim of this study was to investigate whether MCPIP1 is involved in the pathogenesis of SCC. METHODS: We analyzed the distribution of MCPIP1 in skin biopsies of patients with actinic keratoses (AKs) and SCCs. To explore the mechanisms by which MCPIP1 may modulate tumorigenesis in vivo, we established a mouse model of chemically induced carcinogenesis. RESULTS: Skin expression of MCPIP1 changed during the transformation of precancerous lesions into cutaneous SCC. MCPIP1 immunoreactivity was high in the thickened area of the AK epidermis but was predominantly restricted to keratin pearls in fully developed SCC lesions. Accelerated development of chemically induced skin tumors was observed in mice with loss of epidermal MCPIP1 (Mcpip1eKO). Papillomas that developed in Mcpip1eKO mouse skin were larger and characterized by elevated expression of markers typical of keratinocyte proliferation and tumor angiogenesis. This phenotype was correlated with enhanced expression of IL-6, IL-33 and transforming growth factor-beta (TGF-ß). Moreover, our results demonstrated that in keratinocytes, the RNase MCPIP1 is essential for the negative regulation of genes encoding SCC antigens and matrix metallopeptidase 9. CONCLUSIONS: Overall, our results provide a mechanistic understanding of how MCPIP1 contributes to the development of epidermoid carcinoma.


Asunto(s)
Carcinoma de Células Escamosas/genética , Epidermis/metabolismo , Ribonucleasas/metabolismo , Animales , Humanos , Ratones
6.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638546

RESUMEN

Sepsis is the leading cause of death in intensive care units worldwide. Current treatments of sepsis are largely supportive and clinical trials using specific pharmacotherapy for sepsis have failed to improve outcomes. Here, we used the lipopolysaccharide (LPS)-stimulated mouse RAW264.7 cell line and AlphaLisa assay for TNFa as a readout to perform a supervised drug repurposing screen for sepsis treatment with compounds targeting epigenetic enzymes, including kinases. We identified the SCH772984 compound, an extracellular signal-regulated kinase (ERK) 1/2 inhibitor, as an effective blocker of TNFa production in vitro. RNA-Seq of the SCH772984-treated RAW264.7 cells at 1, 4, and 24 h time points of LPS challenge followed by functional annotation of differentially expressed genes highlighted the suppression of cellular pathways related to the immune system. SCH772984 treatment improved survival in the LPS-induced lethal endotoxemia and cecal ligation and puncture (CLP) mouse models of sepsis, and reduced plasma levels of Ccl2/Mcp1. Functional analyses of RNA-seq datasets for kidney, lung, liver, and heart tissues from SCH772984-treated animals collected at 6 h and 12 h post-CLP revealed a significant downregulation of pathways related to the immune response and platelets activation but upregulation of the extracellular matrix organization and retinoic acid signaling pathways. Thus, this study defined transcriptome signatures of SCH772984 action in vitro and in vivo, an agent that has the potential to improve sepsis outcome.


Asunto(s)
Antiinflamatorios/farmacología , Endotoxemia/tratamiento farmacológico , Indazoles/farmacología , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Piperazinas/farmacología , Piridinas/farmacología , Pirrolidinas/farmacología , Triazoles/farmacología , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Línea Celular , Quimiocina CCL2/sangre , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Reposicionamiento de Medicamentos , Endotoxemia/mortalidad , Regulación de la Expresión Génica/efectos de los fármacos , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Activación Plaquetaria/efectos de los fármacos , Células RAW 264.7 , Transcriptoma/genética
7.
J Inflamm Res ; 14: 2377-2388, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113146

RESUMEN

PURPOSE: During sepsis, an excessive inflammatory immune reaction contributes to multi-organ dysfunction syndrome (MODS), a critical condition associated with high morbidity and mortality; however, the molecular mechanisms driving MODS remain elusive. METHODS: We used RNA sequencing to characterize transcriptional changes in the early phase of sepsis, at 6, 12, 24 hour time points in lung, kidney, liver, and heart tissues, in a cecal ligation and puncture (CLP)-induced polymicrobial sepsis murine model. RESULTS: The CLP surgery induced significant changes (adj. p-value<0.05) in expression of hundreds of transcripts in the four organs tested, with the highest number exceeding 2,000 differentially expressed genes (DEGs) in all organs at 12 hours post-CLP. Over-representation analysis by functional annotations of DEGs to the Reactome database revealed the immune system, hemostasis, lipid metabolism, signal transduction, and extracellular matrix remodeling biological processes as significantly altered in at least two organs, while metabolism of proteins and RNA were revelaed as being liver tissue specific in the early phase of sepsis. CONCLUSION: RNA sequencing across organs and time-points in the CLP murine model allowed us to study the trajectories of transcriptome changes demonstrating alterations common across multiple organs as well as biological pathways altered in an organ-specific manner. These findings could pave new directions in the research of sepsis-induced MODS and indicate new sepsis treatment strategies.

8.
J Mol Med (Berl) ; 97(12): 1669-1684, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31786670

RESUMEN

MCPIP1 (Regnase-1, encoded by the ZC3H12A gene) regulates the mRNA stability of several inflammatory cytokines. Due to the critical role of this RNA endonuclease in the suppression of inflammation, Mcpip1 deficiency in mice leads to the development of postnatal multiorgan inflammation and premature death. Here, we generated mice with conditional deletion of Mcpip1 in the epidermis (Mcpip1EKO). Mcpip1 loss in keratinocytes resulted in the upregulated expression of transcripts encoding factors related to inflammation and keratinocyte differentiation, such as IL-36α/γ cytokines, S100a8/a9 antibacterial peptides, and Sprr2d/2h proteins. Upon aging, the Mcpip1EKO mice showed impaired skin integrity that led to the progressive development of spontaneous skin pathology and systemic inflammation. Furthermore, we found that the lack of epidermal Mcpip1 expression impaired the balance of keratinocyte proliferation and differentiation. Overall, we provide evidence that keratinocyte-specific Mcpip1 activity is crucial for the maintenance of skin integrity as well as for the prevention of excessive local and systemic inflammation. KEY MESSAGES: Loss of murine epidermal Mcpip1 upregulates transcripts related to inflammation and keratinocyte differentiation. Keratinocyte Mcpip1 function is essential to maintain the integrity of skin in adult mice. Ablation of Mcpip1 in mouse epidermis leads to the development of local and systemic inflammation.


Asunto(s)
Inflamación/metabolismo , Interleucina-1/metabolismo , Queratinocitos/metabolismo , Ribonucleasas/metabolismo , Piel/metabolismo , Envejecimiento/inmunología , Envejecimiento/patología , Animales , Calgranulina A/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Epidermis/metabolismo , Regulación de la Expresión Génica/genética , Ontología de Genes , Inflamación/inmunología , Queratinas/metabolismo , Ganglios Linfáticos/crecimiento & desarrollo , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ribonucleasas/genética , Piel/inmunología , Piel/patología , Bazo/crecimiento & desarrollo , Bazo/inmunología , Bazo/metabolismo , Transcriptoma/genética
9.
ESC Heart Fail ; 6(2): 351-361, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30623613

RESUMEN

AIMS: Mesenchymal stromal cells isolated from different tissues are claimed to demonstrate similar therapeutic potential and are often incorrectly named mesenchymal stem cells. However, through comparison of such cells is lacking. This study aimed to compare the transcriptome of mesenchymal cells of the same phenotype isolated from the heart muscle and epicardial fat of the same patient, before and after culture. METHODS AND RESULTS: Cells were isolated from biopsies of the right ventricle and epicardial fat collected from five patients (three men and two women, mean age 59.4 ± 2.6) who underwent heart transplantation due to ischaemic cardiomyopathy. In both tissues, immunophenotyping revealed three distinct populations: (i)CD31- CD45- CD90+ CD34+ CD146- , (ii) CD31- CD45- CD90+ CD34- CD146+ , and (iii) CD31- CD45- CD90- CD34- CD146+ , of which only the first one could be grown after sorting. Material for RNA-seq was collected from these cells before culture (250 cells) and at passage 6 (5000 cells). Transcriptomic analysis revealed that cells of the same phenotype (CD31- CD45- CD90+ CD34+ CD146- ) upon isolation preferentially clustered according to the tissue of origin, not to the patient from whom they were isolated. Genes up-regulated in the right ventricle-derived cells were related to muscle physiology while down-regulated genes included those encoding proteins with transmembrane signalling receptor activity. After six passages, heart-derived and fat-derived cells did not acquire similar transcriptome. Cells isolated from the right ventricle in comparison with their epicardial fat-derived counterparts demonstrated higher level of transcripts related, among others, to RNA processing and muscle development. The down-regulated genes were involved in the nucleosome assembly, DNA packaging and replication, and interleukin-7-mediated signalling pathway. Cells from epicardial fat demonstrated higher heterogeneity both before and after culture. Cell culture significantly changed gene expression profile within both tissues. CONCLUSIONS: This study is an essential indication that mesenchymal cells isolated from different tissues do not demonstrate similar properties. Phenotypic identification and ease of isolation cannot be considered as a criterion in any therapeutic utilization of such cells.


Asunto(s)
Tejido Adiposo/patología , Perfilación de la Expresión Génica/métodos , Ventrículos Cardíacos/patología , Células Madre Mesenquimatosas/patología , Pericardio/patología , Transcriptoma/genética , Tejido Adiposo/metabolismo , Biopsia , Diferenciación Celular , Células Cultivadas , Femenino , Citometría de Flujo , Ventrículos Cardíacos/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Pericardio/metabolismo , Fenotipo , Reacción en Cadena de la Polimerasa , ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA