Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Metab ; 6(4): 741-763, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38664583

RESUMEN

Due to the rise in overnutrition, the incidence of obesity-induced hepatocellular carcinoma (HCC) will continue to escalate; however, our understanding of the obesity to HCC developmental axis is limited. We constructed a single-cell atlas to interrogate the dynamic transcriptomic changes during hepatocarcinogenesis in mice. Here we identify fatty acid binding protein 5 (FABP5) as a driver of obesity-induced HCC. Analysis of transformed cells reveals that FABP5 inhibition and silencing predispose cancer cells to lipid peroxidation and ferroptosis-induced cell death. Pharmacological inhibition and genetic ablation of FABP5 ameliorates the HCC burden in male mice, corresponding to enhanced ferroptosis in the tumour. Moreover, FABP5 inhibition induces a pro-inflammatory tumour microenvironment characterized by tumour-associated macrophages with increased expression of the co-stimulatory molecules CD80 and CD86 and increased CD8+ T cell activation. Our work unravels the dual functional role of FABP5 in diet-induced HCC, inducing the transformation of hepatocytes and an immunosuppressive phenotype of tumour-associated macrophages and illustrates FABP5 inhibition as a potential therapeutic approach.


Asunto(s)
Carcinoma Hepatocelular , Proteínas de Unión a Ácidos Grasos , Ferroptosis , Neoplasias Hepáticas , Proteínas de Neoplasias , Obesidad , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiología , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Ratones , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiología , Obesidad/complicaciones , Obesidad/metabolismo , Masculino , Microambiente Tumoral/inmunología , Humanos , Ratones Endogámicos C57BL , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología
2.
J Endocrinol ; 260(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37997938

RESUMEN

During pregnancy the maternal pancreatic islets of Langerhans undergo adaptive changes to compensate for gestational insulin resistance. The lactogenic hormones are well established to play a key role in regulating the islet adaptation to pregnancy, and one of the mechanisms through which they act is through upregulating ß-cell serotonin production. During pregnancy islet serotonin levels are significantly elevated, where it is released from the ß-cells to drive the adaptive response through paracrine and autocrine effects. We have previously shown that placental kisspeptin (KP) also plays a role in promoting the elevated insulin secretion and ß-cell proliferation observed during pregnancy, although the precise mechanisms involved are unclear. In the present study we investigated the effects of KP on expression of pro-proliferative genes and serotonin biosynthesis within rodent islets. Whilst KP had limited effect on pro-proliferative gene expression at the time points tested, KP did significantly stimulate expression of the serotonin biosynthesis enzyme Tph-1. Furthermore, the islets of pregnant ß-cell-specific GPR54 knockdown mice were found to contain significantly fewer serotonin-positive ß-cells when compared to pregnant controls. Our previous studies suggested that reduced placental kisspeptin production, with consequent impaired kisspeptin-dependent ß-cell compensation, may be a factor in the development of GDM in humans. These current data suggest that, similar to the lactogenic hormones, KP may also contribute to serotonin biosynthesis and subsequent islet signalling during pregnancy. Furthermore, upregulation of serotonin biosynthesis may represent a common mechanism through which multiple signals might influence the islet adaptation to pregnancy.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Embarazo , Ratones , Femenino , Animales , Kisspeptinas/metabolismo , Insulina/metabolismo , Serotonina/metabolismo , Placenta/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Prolactina/metabolismo
3.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014178

RESUMEN

Obesity-linked fatty liver is a significant risk factor for hepatocellular carcinoma (HCC)1,2; however, the molecular mechanisms underlying the transition from non-alcoholic fatty liver disease (NAFLD) to HCC remains unclear. The present study explores the role of the endoplasmic reticulum (ER)-associated protein NgBR, an essential component of the cis-prenyltransferases (cis-PTase) enzyme3, in chronic liver disease. Here we show that genetic depletion of NgBR in hepatocytes of mice (N-LKO) intensifies triacylglycerol (TAG) accumulation, inflammatory responses, ER/oxidative stress, and liver fibrosis, ultimately resulting in HCC development with 100% penetrance after four months on a high-fat diet. Comprehensive genomic and single cell transcriptomic atlas from affected livers provides a detailed molecular analysis of the transition from liver pathophysiology to HCC development. Importantly, pharmacological inhibition of diacylglycerol acyltransferase-2 (DGAT2), a key enzyme in hepatic TAG synthesis, abrogates diet-induced liver damage and HCC burden in N-LKO mice. Overall, our findings establish NgBR/cis-PTase as a critical suppressor of NAFLD-HCC conversion and suggests that DGAT2 inhibition may serve as a promising therapeutic approach to delay HCC formation in patients with advanced non-alcoholic steatohepatitis (NASH).

4.
Cell Physiol Biochem ; 45(2): 656-666, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29408822

RESUMEN

BACKGROUND/AIMS: CRISPR-Cas9, a RNA-guided targeted genome editing tool, has revolutionized genetic engineering by offering the ability to precisely modify DNA. GPRC5B is an orphan receptor belonging to the group C family of G protein-coupled receptors (GPCRs). In this study, we analysed the functional roles of the Gprc5b receptor in MIN6 ß-cells using CRISPR-Cas9 and transient over-expression of Gprc5b. METHODS: The optimal transfection reagent for use in MIN6 ß-cells was determined by analysing efficiency of GFP plasmid delivery by cell sorting. A MIN6 ß-cell line in which Gprc5b expression was knocked down (Gprc5b KD) was generated using CRISPR-Cas9 technology. Gprc5b receptor mRNA expression, proliferation, apoptosis, Cignal 45-Pathway Reporter Array signalling and western blot assays were carried out using Gpcr5b KD MIN6 ß-cells that had been transiently transfected with different concentrations of mouse Gprc5b plasmid to over-express Gprc5b. RESULTS: JetPRIME® was the best candidate for MIN6 ß-cell transfection, providing approximately 30% transfection efficiency. CRISPR-Cas9 technology targeting Gprc5b led to stable knock-down of this receptor in MIN6 ß-cells and its re-expression induced proliferation and potentiated cytokine- and palmitate-induced apoptosis. The Cignal 45 Reporter analysis indicated Gprc5b-dependent regulation of apoptotic and proliferative pathways, and western blotting confirmed activation of signalling via TGF-ß and IFNγ. CONCLUSION: This study provides evidence of CRISPR-Cas9 technology being used to down-regulate Gprc5b expression in MIN6 ß-cells. This strategy allowed us to identify signalling pathways linking GPRC5B receptor expression to ß-cell proliferation and apoptosis.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Receptores Acoplados a Proteínas G/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Interferón gamma/metabolismo , Ratones , Neuropéptidos/metabolismo , Ácido Palmítico/toxicidad , Fosforilación , Plásmidos/genética , Plásmidos/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
5.
Cell Physiol Biochem ; 44(4): 1352-1359, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29186709

RESUMEN

BACKGROUND/AIMS: Rodent islets are often used for basic science research but they do not always recapitulate signalling events in human islets. This study evaluated the glucose-dependent responses of human and mouse islets in terms of dynamic insulin secretion, metabolic coupling and the role of glucose transporters. METHODS: Glucose-induced insulin secretion from isolated mouse and human islets was profiled by perifusion and islet ATP levels were measured by chemoluminescence assay. Glucose transporter expression was determined by qPCR and western blotting. RESULTS: Human islets show a left-shifted glucose concentration-insulin secretion profile compared to mouse islets. These data are consistent with glucose transporter expression, with human islets expressing mainly GLUT1 and GLUT3, and GLUT2 being the predominant transporter in mouse islets. Using the GLUT1 inhibitor STF-31 we unveiled an important role for GLUT1 for differences in glucose-induced insulin secretion profiles observed between the two species. CONCLUSION: The high affinity of GLUT1/3 for glucose reflects the left-shifted glucose-induced insulin secretory response of human islets and the impairment of insulin secretion from human islets after STF-31 treatment indicates an important role for GLUT1 in human islet stimulus-secretion coupling. Our data provide further insight into key differences between insulin secretion regulation in mouse and human islets.


Asunto(s)
Adenosina Trifosfato/metabolismo , Glucosa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Adulto , Animales , Femenino , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 2/antagonistas & inhibidores , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 3/antagonistas & inhibidores , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Humanos , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Cinética , Masculino , Ratones , Persona de Mediana Edad , Piridinas/farmacología , ARN Mensajero/metabolismo
6.
Sci Rep ; 7: 46600, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28422162

RESUMEN

G-protein coupled receptors (GPCRs) are essential for islet function, but most studies use rodent islets due to limited human islet availability. We have systematically compared the GPCR mRNA expression in human and mouse islets to determine to what extent mouse islets can be used as surrogates for human islets to study islet GPCR function, and we have identified species-specific expression of several GPCRs. The A3 receptor (ADORA3) was expressed only in mouse islets and the A3 agonist MRS 5698 inhibited glucose-induced insulin secretion from mouse islets, with no effect on human islets. Similarly, mRNAs encoding the galanin receptors GAL1 (GALR1), GAL2 (GALR2) and GAL3 GALR3) were abundantly expressed in mouse islets but present only at low levels in human islets, so that it reads (GALR3) and galanin inhibited insulin secretion only from mouse islets. Conversely, the sst1 receptor (SSTR1) was abundant only in human islets and its selective activation by CH 275 inhibited insulin secretion from human islets, with no effect on mouse islets. Our comprehensive human and mouse islet GPCR atlas has demonstrated that species differences do exist in islet GPCR expression and function, which are likely to impact on the translatability of mouse studies to the human context.


Asunto(s)
Regulación de la Expresión Génica , Secreción de Insulina , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Receptor de Adenosina A3/metabolismo , Receptores de Galanina/biosíntesis , Receptores de Somatostatina/biosíntesis , Animales , Humanos , Islotes Pancreáticos/citología , Masculino , Ratones , Especificidad de la Especie
7.
Dis Model Mech ; 9(1): 51-61, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26563389

RESUMEN

The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the ß-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic ß-cell diseases.


Asunto(s)
Glucosa/metabolismo , Homeostasis , Complejos Multiproteicos/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Páncreas/metabolismo , Fosforilación , Piperidinas/química , Pirazoles/química , Receptor Cannabinoide CB1/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Rimonabant , Sirolimus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA